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In Wire Arc Additive Manufacturing (WAAM), weld beads are deposited layer-by-layer to form the final
part. Thus, having geometrically non-uniform beads will lead to voids in the final printed part, which will
significantly impact its overall quality and mechanical strength. The uniformity of beads depends on the
proper choice of process parameters, namely the torch speed and wire feed rate. However, it is impossible
to print all different combinations of these parameters to model the bead accurately, as printing them is
expensive and time-consuming. Therefore, in this paper, we propose building a process map based on the
probability that a weld bead is geometrically uniform using support vector machine. Experiments are car-
ried out on the Bronze and Stainless Steel material datasets. The results show that the generated process
map co-relates well with that of a manual quantization approach.
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1. Introduction

Wire Arc Additive Manufacturing (WAAM) is a direct energy
deposition process that uses wire as feedstock and an electric arc
as a power source to build 3D metallic components using a motion
system [1]. The components are built by depositing overlapping
weld beads in a layer-by-layer fashion [2]. Recently, WAAM is
becoming popular because of its low capital cost, low buy-to-fly
ratio, high deposition rate, and friendly to environment [3-7].
There are many approaches to building a WAAM system, and the
common approach was to use a computer-controlled robotic sys-
tem equipped with a welding power source, a welding torch, and
a wire feed system.

Despite the above-mentioned advantages, there are challenges
in the WAAM process that needs to be overcome in order for it
to be used as a viable process. This includes print fusion defects,
low tolerance to process variation, lack of design rules, lack of
methods for qualification, etc. Furthermore, using different combi-
nations of process parameters, diverse processing conditions can
also generate beads of different quality. The print quality in WAAM
is hard to predict and control due to its high sensitivity to process
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variability. Therefore, it is important to build an accurate process
map to facilitate the qualification and certification of the print pro-
cess to ensure the part is printed with a performance of up to a
repeatable level [8]. Typically, such map is generated based on
manual observation of the bead flow, which is labelled based on
defects such as hump and scallop, incomplete toe fusion, etc. To
the best of the authors’ knowledge, there still does not exist a sys-
tematic approach to generating such a map. In this paper, we seek
to address this and focus on building a process map based on the
probability that a weld bead is geometrically uniform using sup-
port vector machine. The goal is to construct a process map where
it can be used to avoid non-uniform weld bead prints as they create
void or porosity in the final printed product [9].

Here we investigate the use of two types of dominant process
parameters for WAAM such as torch speed (v,) and wire feed rate
(vw) to generate the process map. The advantages of our proposed
approach are many. First, it helps us predict the quality of beads
based on their uniformity. Second, it gives a mapping relationship
between process parameters and final part qualities. Third, it can
reduce the number of experiments required to achieve a cost-
effective and efficient development of AM parts over a wide range
of materials [10]. Last, it shows machine learning can provide a
practical methodology to optimize the process parameters of AM
technologies [10].
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2. Experimental setup, data collection, and dataset labeling
2.1. Experimental setup

All the experiments were conducted on the robotic Wire Arc
Additive Manufacturing (WAAM) system located at the Singapore
University of technology and Design (SUTD). As shown in Fig. 1
(a), the system consists of a robot manipulator (ABB IRB1660ID),
a welding power source (Fronius TPS 400i) equipped with a weld-
ing torch (Fronius WF 25i Robacta Drive), and a gantry robot made
up of three linear rails (PMI KM4510) powered by three servos
(SmartMotor SM34165DT) with a 2D laser scanner (Micro-
Epsilon scanCONTROL 2910-100) attached. The gantry system is
controlled to move the laser scanner in 3D space to measure point
clouds of the printed layer’s surface.

2.2. Data collectionss

We printed 50 weld beads using bronze (ERCuNiAl) wires
and 52 weld beads using stainless steel (ER316LSi) wires for dif-
ferent combinations of torch speed and wire feed rate onto a
substrate, as shown in Fig. 1(b). The length of each bead printed
is around 10 cm. The torch speed and wire feed rate for our
experiments range from [3,10] mm/s and [3,8] m/min respec-
tively for bronze, and [3,15] mm/s and [3,6] m/min respectively
for stainless steel.

The printed bead’s height (h), width (w), and area (A) were
measured using a 2D laser scanner. We filtered the scanner data
using a moving average filter and extracted the weld bead’s toe
points from the second derivative of the filtered data. Based on
our gantry measurement system resolution, the number of scan
lines for each bead is 50 (for some beads, it is 49). Hence, we fur-
ther segment each bead into 50 (or 49) segments for training and
testing purposes.

2.3. Dataset labeling

We divided defective and non-defective beads based on how
non-uniformity it is. When the geometrical shape of the printed
bead is uniform, we refer to it as non-defective, and when the bead
shape is less uniform, we refer to it as defective. Here we use a
“Combined Root Mean Square Error (RMSE)” of a bead segment
width, height, and area to measure its uniformity [9]. The smaller
the combined RMSE, the better the quality of the bead. This is
defined by.

y= widthgyse + heightryse + +/aredgyse (1)
B 3

Welding System

(a)
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3. Methodology

Our proposed process parameter map divides non-defective
(good) and defective (bad) beads based on their probability. The
procedure for generating such a process parameter map is as
shown in Fig. 2 and it consists of two parts. First, we train a two-
parameter sigmoid function based on the SVM classifier function
f(x) and the various segment labels Y = [y;]. Next, we used the
learned sigmoid function to obtain the probability for a particular
set of process parameters x; = (v, v,,) that will yield a geometri-
cally uniform bead to generate the process map.

3.1. Training/Learning

The non-linear support vector machine (SVM) function used for
our classifier is.

fx) = zn:yiocik(xj,x) +b (2)
=

whose inputs X = [x;] are a matrix of features which consists of
the process parameters (2, v,). The inputs Y are a matrix of asso-
ciated labels and is computed based on a bead uniformity as
described by Eq (1). Here, we use Radial Basis Function (RBF).

k(x;.x) = exp — (7] |x = x][")

as the kernel to our classifier function. For our application, we
choose y = 0.1. The coefficients ¢; and b are the parameters to be
trained based on the obtained datasets.

Next, we convert the classifier output into probabilities by Platt
scaling [11]. To do so, we use two parameters sigmoid function,
which takes the output of the classifier f; and converts them into
probabilities. The probability function is given by the sigmoid func-
tion of the form.

1
~1+exp(1+fA+B)
where f; = f(x;). The coefficient A and B can be found by minimizing

the negative log-likelihood of training data, which is also known as
cross-entropy loss of the form > y;log(p;) — (1 —y;)log(1 — p;).

(3)

Di

3.2. Prediction

After learning an optimal A* and B* for the learned sigmoid
function, the same sigmoid function Eq (3) is used for probability
prediction based on a set of process parameters x;. To find the prob-
ability p; for a certain set of process parameter x; that generates a
good bead, Eq. (4) is used.

(b)

Fig. 1. (a) Experimental setup of SUTD WAAM for Data collection (b) Illustration of the Bronze weld beads plate.



N.A. Surovi and G.S. Soh

Training/Learning

Materials Today: Proceedings 70 (2022) 113-118

Non-linear SVM

Learning of Sigmoid function
1
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Fig. 2. Our procedures for process parameter map generation.

pi = P(y; = 1lx)) (4)
4. Process map generation and performance evaluation
4.1. Training and testing datasets

The training dataset we used for stainless steel is n = 1950

(based on 39 beads), and the testing dataset is 650 (based on 13
beads). Similarly, for bronze, the training dataset used is
n = 1950 (39 beads), and the testing dataset is 539 (11 beads).

4.2. Process map generation

We plot the process parameters map X; = (¢;, vy) based on its
probability to produce a good bead for both the Bronze and Stain-
less Steel materials. They are as shown in Fig. 3. This plot is pre-
dicted from the learned Sigmoid Function as denoted by Eq. (4).
The brown region indicates a high probability that the set of pro-
cess parameters can form a good bead, while the blue region indi-
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cates a low probability that it will form a bad bead. The white
region indicates that the probability is 0.5, meaning in that region
of process parameters, both good and bad beads can form with
equal probability.

4.3. Benchmarking with manual quantization

To validate our generated process map results, we have a
WAAM expert performing manual quantization of the process
parameter map based on her experience. The results are as shown
in Fig. 4.

Fig. 5 shows both Figs. 3 and 4 superimposed on each other. We
observe that the process map for both stainless steel and bronze
matches well based on the human quantization process. Therefore,
we can conclude that the generated process parameter map based
on our approach is consistent with the current approach. However,
for our approach, we have the advantage of additional information
as compared to the current approach, such as a prediction of the
quality of the beads at the boundary region.
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Fig. 3. Process parameter map generation using SVM for (a) Stainless steel (SS) and (b) Bronze.
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Fig. 4. Expert manual quantization Process parameter map for (a) Stainless steel (SS) and (b) Bronze.
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Fig. 5. Comparison of two Process parameter maps for (a) Stainless steel (SS) and (b) Bronze.

4.4. Performance evaluation

Now we quantify the performance of our learned non-linear
SVM model based on the testing accuracy and confusion matrix.
To perform this, we expand our training features parameters
and include geometric parameters like the bead height (h), width
(w), or area (A) for training and testing. Eight combinations of
features, as shown in Table 1, including those that we used to
generate the process map, are evaluated to understand their
resulting accuracy.

Table 1 shows the results of the testing accuracy of our model
for the two datasets (Stainless and Bronze). From the table, we
can see that the testing accuracy is the same for all combinations
of inputs features for stainless steel at 92 %. However, for bronze,
the testing accuracy varies from 68 % to 76 %, depending on which
combinations of inputs features are used.

Table 2 shows the confusion matrix based on the different fea-
tures used. From the results, we can observe that our model can
predict 550 good bead segments correctly from out of the 600 good
stainless steel testing datasets for all combinations of features.
Also, it is worth noting that the model can predict all the 50 bad
stainless steel segments correctly. However, for bronze, we get dif-
ferent confusion matrices based on the combinations of features
used. The best feature combination is X = (z;, vy, h , w), and the
model can only pick out 294 good segments correctly out of the
343 good bronze testing datasets, and 120 bad segments out of
the 196 bad bronze testing datasets.

116

Table 1

Different combinations of inputs give different testing accuracy.

08
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Input Features (X)

Testing accuracy (SS)

Testing accuracy (B)

torch speed
wire feed
torch speed
wire feed
height
torch speed
wire feed
width
torch speed
wire feed
area
torch speed
wire feed
height
width
torch speed
wire feed
height
area
torch speed
wire feed
width
area
torch speed
wire feed
height
width
area

92 %

92 %

92 %

92%

92 %

92 %

92 %

92%

72%

73 %

72%

69 %

76 %

69 %

68 %




N.A. Surovi and G.S. Soh

Materials Today: Proceedings 70 (2022) 113-118

Table 2
Different combinations of inputs give different confusion matrix.
Features (Stainless Steel) True Features (Bronze) True
Good Bad Good Bad
torch speed Predicted Good 550 0 torch speed Predicted Good 343 147
wire feed wire feed
Bad 50 50 Bad 0 49
torch speed Predicted Good 550 0 torch speed Predicted Good 294 92
wire feed wire feed
height height
Bad 50 50 Bad 49 104
torch speed Predicted Good 550 0 torch speed Predicted Good 342 145
wire feed wire feed
width width
Bad 50 50 Bad 1 51
torch speed Predicted Good 550 0 torch speed Predicted Good 342 164
wire feed wire feed
area area
Bad 50 50 Bad 1 32
torch speed Predicted Good 550 0 torch speed Predicted Good 294 76
wire feed wire feed
height height
width width
Bad 50 50 Bad 49 120
torch speed Predicted Good 550 0 torch speed Predicted Good 294 115
wire feed wire feed
height height
area area
Bad 50 50 Bad 49 81
torch speed Predicted Good 550 0 torch speed Good 342 168
wire feed wire feed
width width
area area
Bad 50 50 Bad 1 28
torch speed Predicted Good 550 0 torch speed Predicted Good 294 101
wire feed wire feed
height height
width width
area area
Bad 50 50 Bad 49 95

5. Conclusion

We have proposed a method to construct the process parameter
map for WAAM based on the uniformity of bead geometry using
support vector machine. This method enables a systematic
approach to generate the process map based on a probability
approach. A label was proposed to measure a bead uniformity
based on the RSME of its width, height, and area. Experiments were
conducted on Stainless Steel and Bronze material, and we found
that the process map generated based on our proposed approach
co-relates well with a human quantization approach. We also
quantify the performance of our learned non-linear SVM model
based on the testing accuracy and confusion matrix.

CRediT authorship contribution statement
Nowrin Akter Surovi: Writing - original draft, Conceptualiza-
tion, Methodology, Software, Validation, Investigation. Gim Song

Soh: Writing - review & editing, Validation, Visualization,
Supervision.

Data availability
The data that has been used is confidential.

Declaration of Competing Interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing

interests: Soh Gim Song reports financial support was provided by
A*STAR AME IAF-PP, Singapore. Nowrin Akter Surovi reports finan-
cial support was provided by Ministry of Education, Singapore.

Acknowledgments

The authors gratefully acknowledge the support of the A*STAR
AME IAF-PP, Singapore; Grant number A19E1a0097.

References

[1] T.A. Rodrigues, V. Duarte, R. Miranda, T.G. Santos, J. Oliveira, Current status and
perspectives on wire and arc additive manufacturing (WAAM), Materials 12 (7)
(2019) 1121.

[2] A. Busachi, J. Erkoyuncu, P. Colegrove, F. Martina, ]. Ding, Designing a WAAM
based manufacturing system for defence applications, Procedia Cirp 37 (2015)
48-53.

[3] D. Ding, Z. Pan, D. Cuiuri, H. Li, A practical path planning methodology for wire
and arc additive manufacturing of thin- walled structures, Rob. Comput. Integr.
Manuf. 34 (2015) 8-19.

[4] F. Xu, V. Dhokia, P. Colegrove, A. McAndrew, S. Williams, A. Henstridge, S.T.
Newman, Realisation of a multi-sensor framework for process monitoring of
the wire arc additive manufacturing in producing ti-6al-4v parts, Int. J.
Comput. Integr. Manuf. 31 (8) (2018) 785-798.

[5] L. Yuan, Z. Pan, D. Ding, F. He, S. van Duin, H. Li, W. Li, Investigation of humping
phenomenon for the multi-directional robotic wire and arc additive
manufacturing, Rob. Comput. Integr. Manuf. 63 (2020) 101916.

[6] B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, ]. Xu, J. Norrish, A review of the wire arc
additive manufacturing of metals: proper- ties, defects and quality
improvement, J. Manuf. Processes 35 (2018) 127-139.

[7] C. Xia, Z. Pan, ]. Polden, H. Li, Y. Xu, S. Chen, Y. Zhang, A review on wire arc
additive manufacturing: monitoring, control and a framework of automated
system, J. Manuf. Syst. 57 (2020) 31-45.

[8] Byeong-Min Roh et al. “Ontology-based process map for metal additive
manufacturing”. In: Journal of Materials Engineering and Performance 30.12
(2021), pp. 8784-8797


http://refhub.elsevier.com/S2214-7853(22)05791-1/h0005
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0005
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0005
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0010
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0010
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0010
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0015
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0015
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0015
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0020
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0020
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0020
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0020
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0025
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0025
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0025
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0030
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0030
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0030
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0035
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0035
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0035

N.A. Surovi and G.S. Soh

[9] N. A. Surovi, A. G. Dharmawan, G. S. Soh. A study on the acoustic signal
based frameworks for the real-time identification of geometrically
defective wire arc bead, in: International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference,

p.

Vol. 85383, American Society of Mechanical
VO3AT03A003.

Engineers,

2021,

118

Materials Today: Proceedings 70 (2022) 113-118

[10] Kenta Aoyagi et al. “Simple method to construct process maps for additive
manufacturing using a support vector machine”. In: Additive manufacturing
27 (2019), pp. 353-362

[11] J. Platt, Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods, Adv. Large Margin Classifiers 10 (3) (1999)
61-74.


http://refhub.elsevier.com/S2214-7853(22)05791-1/h0055
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0055
http://refhub.elsevier.com/S2214-7853(22)05791-1/h0055

	Process map generation of geometrically uniform beads using support vector machine
	1 Introduction
	2 Experimental setup, data collection, and dataset labeling
	2.1 Experimental setup
	2.2 Data collectionss
	2.3 Dataset labeling

	3 Methodology
	3.1 Training/Learning
	3.2 Prediction

	4 Process map generation and performance evaluation
	4.1 Training and testing datasets
	4.2 Process map generation
	4.3 Benchmarking with manual quantization
	4.4 Performance evaluation

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References


