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Acoustic feature based geometric defect identification in wire arc additive
manufacturing
Nowrin Akter Surovi and Gim Song Soh

Singapore University of Technology and Design (SUTD), Singapore, Singapore

ABSTRACT
In additive manufacturing of metals, numerous techniques have been employed to sense print
defects. Among these, acoustic-based sensing has the advantage of low cost and shows the
most potential to identify both external and internal defects as an in-situ monitoring system.
Using acoustic signals, researchers have broadly investigated non-machine learning and
machine learning-based approaches to identify defects like balling, micro defects, lack of fusion
pores, keyhole pores, cracks, and porosity. While most of these works have shown promising
results for laser-based AM systems, few have explored how acoustic signals can be used
effectively for Wire Arc Additive Manufacturing (WAAM) defect detection. This paper proposes a
methodology to construct machine learning (ML)-based models on identifying geometrically
defective bead segments using acoustic signals during the WAAM process. Geometrically
defective bead segment or geometric defect is a defect that causes voids in the final printed
part due to incomplete fusion between two non-uniform overlapping bead segments. Such a
defect is currently not explored in the literature. The proposed methodology uses a novel
dataset labeling approach to identify good and bad bead segments based on an optimal
threshold of the range of mean curvature. Furthermore, the methodology targets defective
bead segments based on acoustic feature inputs like Principal Components (PC) or Mel
Frequency Cepstral Coefficients (MFCC). To understand the resulting performance of the defect
identification models constructed based on the proposed methodology, experiments are
performed and tested on a variety of ML models (KNN, SVM, RF, NN, and CNN) based on the
Inconel 718 material. The results show that the combinatorics of two acoustic input features
and five ML models can be able to identify geometrically defective segments accurately with F1
score that ranges from 80% to 85%.
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1. Introduction

Wire Arc Additive Manufacturing (WAAM) is a direct
energy deposition process according to ASTM F2792-
12a where weld beads are deposited layer-by-layer to
form 3D metallic components (Busachi et al. 2015;
Ding et al. 2015). WAAM employs an electric arc as a
heat source and a metal wire as a feedstock for material
deposition (Rodrigues et al. 2019). WAAM is recently
becoming popular because of its low equipment cost,
low buy-to-fly ratio, high deposition rate, and environ-
mentally friendly approach. However, WAAM suffers
from processing-related defects such as porosity,
cracks, distortion, oxidation, etc. Xu et al. (2018), Yuan
et al. (2020), Wu et al. (2018) and Xia et al. (2020). Some-
times these defects can propagate to the subsequent
layers, which reduces the strength (Rajashekar and Raja-
prakash 2016; Surovi and Soh 2022) of the final printed

part, shortens the product’s lifetime, and sometimes
cause a collapse of the structure that causes economic
loss (Chu and Wang 2016; Vilček et al. 2017). Therefore,
it is important to identify print defects as early as poss-
ible to take appropriate corrective measures during the
printing process to save welding resources and material
costs (Surovi, Dharmawan, and Soh. 2021).

Researchers used various non-destructive techniques
(NDT) to identify defects, such as laser-based profile
scanning, image-based sensing, thermography, acous-
tic-based sensing, etc. For instance, on laser-based
profile scanning, Chen et al. (2021) used a laser
profiler, and Huang et al. (2022) used a 3D laser profil-
ometer inspection (3D-LPI) system for the identification
of surface defects. Laser-based profilers identify such
defects by capturing the reflected laser line from the
target surface through a narrow bandpass optical filter.
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However, the limitation of this approach is that ambient
light may blend with the reflected laser, particularly on
metallic surfaces, affecting its accuracy, and it is incap-
able of identifying internal defects. On image-based
sensing, Li et al. (2023) used a CMOS camera and an
optical filter for surface defects detection. Similarly,
Cho et al. (2022) used a high dynamic range (HDR)
camera to identify normal and abnormal beads. In
both approaches, images from the object were analysed
for defects. The downside of such an approach is that
defects can only be identified if visible on the image,
and such sensors require high maintenance. For thermo-
graphy, Kryukov et al. (2014) used a thermal camera to
identify defects by studying the intensity profile during
the friction weld process. In his approach, internal
defects were identified by monitoring the heat dissipa-
tion from the object’s cooling rate and thermal gradi-
ents. However, additional post-processing is required
to identify defects due to a wormhole or lack of fusion.
In acoustic-based sensing, the acoustic signal generated
during the deposition process is filtered and analysed for
features using signal processing techniques to detect
defects. They have several advantages over the pre-
viously discussed sensors due to their low cost, ease of
maintenance, simple structure, and highly targeted sen-
sitivity (Kaushik, Nance, and Ahuja 2005), on top of their
potential to identify both external and internal defects.

Several works have analysed the acoustic signal from
the electric arc to determine the stability of the deposition
process. Typically, researchers use acoustic emission (AE)
or acoustic sensors to characterise the process stability,
metal transfer modes, or defects. AE sensors are attached
to the printing surface and used to capture the sound
signal waveform through the material during the depo-
sition process. On the other hand, acoustic sensors are
mounted near the printing surface and measure the
sound pressure waveform in the air. In the context of
using acoustic-based sensing to determine process stab-
ility and metal transfer mode, Polajnar, Bergant, and
Grum (2013) showed that irregularities in the bead geo-
metry are reflected in the intensity of acoustic and
current signals. They also found that acoustic signals
with high-frequency arc oscillations indicate process
instability. Pal, Bhattacharya, and Pal (2010) studied the
relationship of welding arc signals with process par-
ameters and metal transfer mode for both continuous
gas metal arc welding (GMAW) and pulsed gas metal
arc welding (P-GMAW). They found that the RMS and Kur-
tosis of arc sound can effectively identify metal transfer
modes. Grad et al. (2004) investigated acoustic signals
and weld process characteristics for GMAW. They found
that non-uniform and discontinuous gas metal arc
welds can be associated with non-regularities in their

arc behaviour, such as long silence between two succes-
sive arc re-ignitions. Lv et al. (2014) showed that the
height of the arcs constituting the shape of the bead
has a linear relationship with the pressure of the
measured acoustic signal. The research mentioned
above highlighted that recorded acoustic signal contains
rich information on the deposition process and can be
used to infer the arc conditions, melt pool dynamics,
and even internal properties of the welded material.

In the context of defect detection using acoustic
signals, researchers have broadly investigated non-
machine learning (non-ML) or machine learning (ML)
based approaches to identify different types of defects
that occurred in metal AM. Among the non-ML-based
approaches, Gaja and Liou (2017) showed that porosity
and crack defects of the laser metal deposition (LMD)
process could be identified by acoustic signals. They
concluded that porosity defect produces acoustic
profiles with shorter decay time and less amplitude,
while cracks defect triggers acoustic characteristics
with short duration and high amplitudes. Ito et al.
(2021) showed that AE sensors could pick out the pore
location and micro defects occurrence in selective laser
melting (SLM). They compared their finding with X-ray
computed tomography (CT) and concluded that burst-
type AE events correspond to pore and micro defects.
Rao et al. (2022) proposed a two-stage ultrasonic wave-
form tomographic method to detect and characterise
porosity defects in multi-material (MM) laser metal depo-
sition (LMD) parts. They concluded that their method
could accurately reconstruct the multi-material interface
and porosity by lowering the deposition laser power.
Recently, Bevans et al. (2023) used a wavelet-integrated
graph theory to filter, process, and monitor the acoustic
signatures for WAAM. This approach utilised one type of
feature, which they term Fiedler number, to pick out
defect location accurately. However, it could not classify
the specific type of defect that occurs at that location.

On the use of ML approaches for defect detection
using acoustic signals, Drissi-Daoudi et al. (2022)
explored acoustic features from time, frequency, and
time-frequency domains. They used a Convolutional
Neural Network (CNN) to identify the lack of fusion
pores, conduction mode, and keyhole pores defects for
three metallic alloys. They found that the classification
of acoustic features is material and defect dependent.
They also found that the performance of their process
depends on the geometry of the chamber material
and the position of the AE sensor. Subsequently, Drissi-
Daoudi et al. (2023) developed a robust acoustic-based
CNN model to classify the same defects based on spec-
trograms, where they demonstrated that such defects
could be picked out even when caused by other
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process parameters that were not used in the training
process. They also found that the number of parameter
sets, the relative normalised distance between the train-
ing and testing set, and the position of the training sets
in the process map influence the resulting classification
accuracy. Similarly, Chen et al. (2023) researched acoustic
features such as time, frequency, and time-frequency
domain with different traditional machine learning and
CNN models to identify crack and keyhole defects in
laser direct energy deposition (LDED). They concluded
that the Mel Frequency Cepstral Coefficient (MFCC) -
CNN model outperformed all the classic ML models in
their experiments. However, their approach required
longer acoustic signals for defect detection than others
in the literature. Wasmer et al. (2023) compared the per-
formance of seven supervised ML algorithms to identify
the lack of fusion and conduction modes of functionally
graded materials based on time and frequency domain
features. They found that the resulting classification accu-
racy was low, at around 73%, due to noise created by the
gas flow surrounding the laser deposition process zones.
Shevchik et al. (2019) combined a Fiber Bragg Grating
(FBG) as an AE sensor with a spectral convolutional
neural network to classify three quality categories based
on porosity. Pandiyan et al. (2021) proposed a semi-super-
vised approach where two generative Convolutional
Neural Networks based on Variational Auto-Encoder,
and General Adversarial Networks were used to differen-
tiate balling, lack of fusion (LOF) pores, and keyhole pores
during the conduction mode melting process for LPBF.
However, their model cannot be generalised across
different powder distributions, process parameters, and
compositions. Tempelman et al. (2022) extracted time
and frequency series features from acoustic signals
using Support Vector Machines (SVM) to classify keyhole
pores defects in the LPBF process. Their approach ident-
ified the keyhole location using an X-ray measurement
and correlated it with an acoustic signal. They found
that high-frequency signals are an indication of keyhole
defect formation. Recently, Kononenko et al. (2023) ana-
lysed the AE signal in the LPBF process and, based on a
certain threshold with their proposed ML model, separ-
ated the AE signature of crack from noise. However, in
practical application, if the noise level is high, the
threshold would be high, which limits such an approach.
A summary of the investigated defects and their limit-
ations for the above-mentioned ML and non-ML papers
are shown in Table 1.

The research, as mentioned above, highlighted that
time domain, frequency domain, and wavelet analysis
are popular techniques to process acoustic signals to
determine defects. Specifically, features such as peak
amplitude, kurtosis, energy, number of counts, duration,

rise, peak amplitude, frequency, and Mel Frequency
Cepstral Coefficient have been used to identify various
defects (Surovi, Dharmawan, and Soh. 2021; Surovi,
Hussain, and Soh 2022). However, while most of the pub-
lished works of both ML and non-ML-based approaches
show promising results for in-situ monitoring systems in
laser-based AM applications, few have explored how
acoustic signals can be used effectively for WAAM
defect detection. Furthermore, when comparing ML
and non-ML-based approaches, we believe that the ML
approaches have benefits over the non-ML approaches
because they can be scaled easily using a unified frame-
work to include more defect categories if appropriate
data are obtained. They also show the potential to
yield a higher accuracy because they can consider mul-
tiple features in their model, unlike non-ML-based
approaches, where only a single feature is considered.
This is because non-ML-based approaches often
require domain-expert knowledge in the form of hand-
crafted rules involving process parameters. Defect
detection algorithms using such hand-crafted rules are
highly sensitive to the rules. For instance, new rules
need to be adopted when introducing a new material
or part geometry (Goh, Sing, and Yeong 2021). On the
other hand, an ML-based approach (e.g. neural net-
works) can learn the rules as long as sufficient and accu-
rate data is provided. However, the accuracy of an ML
model depends on how accurately the data set is
labeled for training. Currently, the datasets reported in
the literature are labeled based on visual inspection,
which is subjective and error-prone.

In this paper, a methodology for constructing ML-
based models to identify geometrically defective bead
segments using acoustic sensing during the WAAM
process is proposed. This approach targets geometric
defects, a defect unique to the WAAM process, due to
its sensitivity to process variation. A bead produced
using a constant WAAM process is known to produce seg-
ments of varying geometrical shapes due to unaccounta-
ble process variation. Such defects are not explored in
literature as the defects do not cause issues to a single
bead segment element itself. However, it has implications

Table 1. Prior work concerning acoustic defect detection in
metal AM.
AM process Targeted Defects Limitations

Balling, Micro defects, No geometric defect detection
LPBF, LDED, Lack of fusion pores,
PBF, SLM Keyhole pores, Crack,

Porosity
WAAM Line width variation,

Voids, Not classify specific defects
Porosity, Not scalable to other defects
Spatter
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when two overlapping bead segments are required to
fuse. It contributes to voids in the final printed part due
to the incomplete fusion between two overlapping
bead segments, a common problem when performing
multi-bead prints as shown in Figure 1.

The ML-based construction methodology proposed
in this paper leverages a novel approach toward geo-
metric defect detection through bead segment monitor-
ing and dataset labeling to separate good and bad bead
segments based on an optimal threshold of the range of
mean curvature. By discretizing defect detection, it has
the benefit of identifying a localised defect more accu-
rately so that early intervention can be possible. Cur-
rently, labeling of AM defects is highly manual and is
based on a visual inspection approach. This is error-
prone and time-consuming, especially when the
dataset is large. Here an approach to determine an
optimal threshold to separate good and bad segments
based on overlapping areas of KDE distribution is pro-
posed. To understand the resulting performance of the
defect detection model constructed based on the pro-
posed methodology, experiments are performed and
tested based on Inconel 718 material.

2. Acoustic signal feature extraction, labeling
and defect identification models

Figure 2 shows the methodology of constructing the
geometric defect detection model. The approach con-
sists of three elements: acoustic feature extraction,
dataset labeling, and defect detection modeling. Two
feature extraction techniques: the Principal Component
Analysis (PCA) and Mel Frequency Cepstral Coefficients
(MFCCs) are explored for their suitability in identifying
geometric defects due to their performance in solving
other domain-specific problems (Palaz and Collobert
2015; Zhao et al. 2010). The data set labeling uses a

curvature-based labeling approach that heuristically
finds a range curvature threshold to separate good
and bad segments. Subsequently, the acoustic features
and labels are used to train five ML models, namely,
the K-Nearest Neighbor (KNN), Support Vector Machine
(SVM), Random Forest (RF), Neural Network (NN), and
Convolutional Neural Network (CNN), to evaluate the
best out of the ten defect identification models for iden-
tifying geometrically defective bead segments.

2.1. Experimental setup and data collection

Experiments were conducted on the robotic WAAM
system at the Singapore University of Technology and
Design (SUTD) to construct the geometric defect detec-
tion frameworks, as shown in Figure 3.

The system consists of a robot manipulator (ABB
IRB1660ID), a welding power source (Fronius TPS 400i)
equipped with a welding torch (Fronius WF 25i
Robacta Drive), a Cartesian coordinate robot made up
of three linear rails (PMI KM4510) powered by three
servos (SmartMotor SM34165DT). In addition, a micro-
phone (UMIK-1 miniDSP) is positioned at about 80 cm
above the substrate for acoustic data measurement.
The UMIK-1 acoustic microphone is an omnidirectional
microphone that is pre-polarised. Its frequency response
is 20 Hz–20 kHz and can capture sound signal sampling
rates up to 48 kHz.

2.1.1. Data collection
Thirty-three weld beads of length 100mm were
printed using Inconel 718 (BÖHLER 3Dprint AM 718)
wires. Each bead was printed using a different torch
speed and wire feed rate combination to obtain
different weld bead geometry. The torch speed (TS)
and wire feed rate (WFR) were chosen based on the
material process map that yielded good bead

Figure 1. Schematic representation of a multi-beads printing (left) and Actual printing (right) as seen from the build direction. Geo-
metrically defective segments lead to voids between two successive beads will affect the final printed part strength and quality.
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formation and was found to be in the range of [1,20]
mm/s and [2,8] m/min, respectively. The shielding
gas used a composition of 70% Ar and 30% He, and
at a constant gas flow rate of � 25 L/min. The
nozzle-to-work distance was set at around 15mm. For
each bead print, acoustic signals were acquired at
44k Hz and divided into 20 signal segments. Since
the different combinations of torch speed and wire
feed rate produce different acoustic signals length,
the temporal resolution of all beads is not the same.
Among all the bead segments, the minimum temporal
resolution is around 230ms and the maximum

temporal resolution is around 5 s. Therefore, downsam-
pling (Surovi, Dharmawan, and Soh. 2021) was per-
formed to make all the acoustic signal segments of
equal length and at a sampling rate of 44100 Hz.
Thus, a total of 660 acoustic signal segments for
different torch speeds and wire feed rates were
obtained.

Similarly, the GOM ATOS III Triple scanner was used
for collecting point clouds measurement of the printed
bead geometry to determine each bead segment curva-
ture range. The point cloud data consists of both vertex
and face information. Examples of the measured bead

Figure 2. The methodology for constructing the geometric defect detection Frameworks.

Figure 3. Experimental setup of SUTD Robotic WAAM for Bead Geometry and Acoustic Data Collection (left). (a) Original beads with
plate (b) Mesh representation of beads with plate (right).
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point cloud are shown in Figure 3. Each bead was separ-
ated from its substrate using RANSEC plane segmenta-
tion and divided into 20 segments to yield 660 bead
profile segments. The length of each bead segment is
5mm. Together with the acoustic signal segments, the
bead profile segments form a set of datasets for
feature extraction, labeling, and construction of the
defect identification model.

2.2. Acoustic feature extraction

The acoustic features consist of the Principle Com-
ponents and Mel Frequency Cepstral Coefficients of
the acoustic signal. In the following the mathematical
background for each feature extraction technique and
implementation details will be explained. Before extract-
ing the features, the acoustic segments are denoised by
wavelet threshold de-noising (Zhang, Wen, and Chen
2017).

2.2.1. Principle component analysis (PCA)
PCA is a popular statistical transform technique for mul-
tidimensional data. It is used extensively in the image
and audio processing for reducing dimensionality and
identifying signals of interest. PCA uses singular value
decomposition and projects the high dimensional data
into a lower dimension space (Tipping and Bishop
1999). The PCA feature extraction procedure consists
of 5 steps and is given below:

. Step 1: Compute Discrete Fourier Transform (DFT)
on the acoustic signal x(t) using the following
equation:

X(k) =
∑N−1

n=0

x(n) e−j2pnk/N, 0 ≤ k ≤ (N− 1) (1)

where N is the number of points used to compute
the DFT.

. Step 2: Assemble the DFT signal of each segment y(k)
into a matrix.

[Y] = {y(0), y(2), . . . , y(N− 1)} (2)

. Step 3: Calculate the covariance matrix [Q] = [Y][Y]T

. Step 4: Calculate the eigenvectors and eigenvalues of
the covariance matrix using the following equation:

liei = [Q]ei (3)

where li is the eigenvalue associated with the eigen-
vector ei.

. Sort the eigenvectors in the descending order of
eigenvalues. The eigenvector with the highest eigen-
value forms the 1st principal component, the

eigenvector with the second-highest eigenvalue
forms the 2nd principal component, the eigenvector
with the third-highest eigenvalue forms the 3nd prin-
cipal component, and so on.

The dimension of the DFT features used for each
bead segment is N = 10495. An example of the DFT
feature of a signal segment based on this dimension
is shown in Figure 4 (left). The number of principal
components required as a feature depends on the
ML model employed for geometric defect detection.
In this paper, 4 principal components yields optimal
results for KNN, SVM, NN and CNN models. As for RF,
it is found that 6 principal components yield the best
results.

2.2.2. Mel frequency cepstral coefficients (MFCC)
MFCC is a popular acoustic feature extraction technique
and is used for speech and emotion recognition (Sato
and Obuchi 2007). Mel frequency refers to human
audible range frequency. MFCCs are short-term power
spectrum-based features (Logan 2000) which capture
the distinguishing characteristics of sound. The MFCCs
feature extraction procedure (Rao and Manjunath
2017) from acoustic signal consists of 7 steps and is
given below:

(1) Step 1: Convert each segmented signal into frames.
(2) Step 2: On each frame, apply a window function (e.g.

Hamming window) to get a windowed signal.
(3) Step 3: Compute Discrete Fourier Transform (DFT) on

the windowed signal using Equation (1).
(4) Step 4: Compute the Mel-filter bank, which is a

set of band-pass filters. The filter bank is a non-
linear-scale filter bank that imitates a human’s
audible system. Most of the filter shape is triangu-
lar. The filter banks are implemented in the fre-
quency domain for MFCC computation. The
conversion of physical frequency to Mel fre-
quency is given by

fMel = 2595 log10 (1+ f/700) (4)

where f is the physical frequency in Hz and fMel

is the human perceived frequency.
(5) Step 5: Calculate filter-bank energies by multiplying

the square of the magnitude spectrum of the DFT
signal with each filter-bank:

s(m) =
∑N−1

k=0

[X(k)]2Hm(k), 0 ≤ m ≤ M− 1 (5)

where M is the total number of triangular Mel filters
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and Hm(k) is the weight given to the kth energy
spectrum bin contributing to the mth output band.

(6) Step 6: Calculate the logarithm of the energies.
(7) Step 7: Apply Discrete Cosine Transform (DCT) to the

log filter bank energies and produce the cepstral
coefficients for each frame. Traditionally, 8 to 13
coefficients are selected. The equation for getting
coefficients is given below:

c(n) =
∑M−1

m=0

log10 (s(m)) cos (pn(m− 0.5)/M) (6)

where n = 0, 1, 2, . . . , C − 1, c(n) are the cepstral
coefficients, and C is the number of MFCCs.

The MFCC features can be computed using the
librosa python package1. There are three parameters
whose value needs to be set: frame size, hop
length, and the number of filter banks, and those
used in this paper are 2048, 512, and 13, respectively.
The reason for setting the frame to 2048 is that if a
frame size were smaller than this, the number of
samples would not have been enough to get a
reliable spectral estimate for defect detection. Simi-
larly, if the frame size is larger than 2048, it may
cause frequent changes in the information inside
the frame, making the signal not stationary. As for
the hop length, 512 is chosen to avoid any infor-
mation loss at the beginning and end of the frame.
Since the first few MFCC coefficients contain the
majority of sound signal information compared to
the rest (Gupta et al. 2013), 13 filter banks that give
13 MFCC coefficients are deemed sufficient for
feature extraction. An example of the resulting
MFCCs feature of a signal segment based on these
parameters is shown in Figure 4 (right).

2.3. Dataset labeling based on range of mean
curvature

The curvature at a point of a bead segment surface indi-
cates how much it curves. The higher the curvature, the
sharper the curve ‘turns’ at that point (Do Carmo 2016).
The range of “mean curvature” of a segment, which we
term range curvature, indicates how much the curvature
changes in a bead segment. If the range curvature is
small, the bead segment has a smooth or uniform
surface. Otherwise, it indicates a non-uniform bead
segment with some geometric defects. See Figure 5.
Notice that the good bead segment has a smaller
range curvature at 0.45 mm while the bad segment
with a geometric defect (circled in red) has a higher
range curvature at 1.2 mm.

To label the dataset, the range curvature of all bead
segments needs to be computed and followed by a
heuristic search to determine an optimal threshold to
separate the good and bad segments. This can be
achieved by searching through a set of range curvature
threshold values. The optimal threshold value is such
that the overlapping area formed by the Kernel
Density Estimates (KDEs) of the good and bad bead seg-
ments yields minimal overlap. Based on this optimal
threshold value, any bead segments above this
threshold are labeled as bad. Otherwise, they are good.

2.3.1. Heuristic-based search for a range of mean
curvature threshold
In the following, the details of the heuristic-based range
curvature threshold search technique will be explained.
Let S = (s1, s2, . . . , si, . . . , sn) be the sequence of bead
segments, and pi1, pi2, . . . , pij, . . . , pim be the set of
points on a particular bead segment si. The parametric
spherical surface at each point on segment si is

Figure 4. DFT features of a segmented signal (left) MFCC features of a segmented signal (right).
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approximated using the moving least squares (MLS)
method (Guennebaud and Gross 2007).

To compute the mean curvature, κ, at each point of
this parametric surface, let kij be the mean-curvature
at jth point pij on segment si. The mean curvature (Jia
2020) at this point, can be found as the average of the
principal curvatures, k1 and k2.

kij(pij) = 1
2
(k1(pij)+ k2(pij)) (7)

Such computation can be easily performed using
MeshLab (Cignoni et al. 2008) with a colourise curvature
(APSS) filter. The steps to determine the optimal range
curvature threshold consist of 3 steps, which are given
below. They consist of Range Curvature Parameter
Metric Computation, Density Estimation, and Heuristic
Search.

(1) Step 1: Let RCi be the range of mean-curvatures of
segment si. Compute range of mean-curvatures
(RC1, RC2, . . . , RCn) for n segments using

RCi = max
j

(kij)−min
j

(kij) i = 1, . . . , n (8)

(2) Step 2: Let Gi = {sj [ S:RCj ≤ RCi} be the set of
good bead segments and Bi = {sj [ S:RCj . RCi}
as the set of bad segments for range curvature
RCi. Estimate the distribution of feasibly good seg-
ments f̂ (Gi) and bad segments f̂ (Bi) using the

kernel density estimates function provided by
SciPy2 library in python.

(3) Step 3: To find the optimal RCi∗ , heuristically
search through various RCi thresholds. The
optimal RCi∗ is the value that minimises the over-
lapping area between two KDE distributions of
f̂ (Gi) and f̂ (Bi).

An example of the resulting labeled data is shown in
Figure 6. Note that the identified range curvature
threshold is 0.85 (Section 3.1) and bead segments 1–3
and 18–20 are deemed defective segments.

2.4. ML models for geometric defect
identification

The proposed geometric defect identification models
built on the five ML models: K-Nearest Neighbor (KNN),
Support Vector Machine (SVM), Random Forest (RF),
Neural Network (NN), and Convolutional Neural
Network (CNN). In the following, the background for
each model and implementation details will be
explained.

2.4.1. K-Nearest neighbor (KNN)
KNN is a supervised learning technique. The algorithm
selects the Kth nearest points of a new example by cal-
culating the distance between all existing examples
with the new example. The shortest distance from the

Figure 5. Range of mean curvature of geometrically good (left) and bad (right) bead segment. The red circle indicates a geometric
defect.
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new example determines the Kth nearest neighbours.
The class of a new example is assigned to the majority
class of Kth nearest points. For this application, the
number of nearest neighbours is proposed to be
K = 11 for PCA features and K = 31 for MFCC features.
These are selected as they yield minimum mean vali-
dation loss over the range of K explored. See Section
3.2.1 for the experiments leading to such a choice.

2.4.2. Support vector machine (SVM)
SVM is a discriminative classifier that creates a line or a
hyper-plane to separate data points into different
classes. A non-linear SVM was employed to classify the
bead segments into good and bad based on their
input features and corresponding labels. The goal of
SVM is to search a function f (x) with parameters ai and
b (Platt 1999), which can predict defective segments of

Figure 6. Bead with defective and non-defective segments (Top) with corresponding acoustic time-domain waveforms (Middle) and
range curvature (Bottom).
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beads. A general format of SVM is shown

f (x) =
∑n

i=1

yiaik(xi, x)+ b (9)

and the RBF kernel (radial basis function kernel) used is

k(xi, x) = exp (− g‖x− xi‖2) (10)

For this application, the hyperparameter γ is selected to
be 0.7 for PCA features, and 0.01 for MFCC features. See
Section 3.2.2 for the experiments leading to such a
choice.

2.4.3. Random forest (RF)
RF is a supervised ML technique with many decision
trees as its building blocks. RF is suitable for modeling
non-linear and complex systems. It is generally
unaffected by outliers and noise and involves a faster
training process. RF learns to build the relationships
between the inputs and outputs in the training stage.
Once the training is done, a new example is presented
for testing. Each tree in the trained RF then votes for
classification (Breiman 2001). The classification with the
most votes is used as the predicted classification. For
this application, the number of trees is selected as 150
for the PCA features and 60 for the MFCC features. See
Section 3.2.3 for the experiments leading to such a
choice.

2.4.4. Neural network (NN)
NN combines input layer neurons, hidden layer neurons,
and output layer neurons, where two neurons are con-
nected by weight. A set of input data is used to train
the NN to optimise its desired output. The training
process is done by adjusting the weights between the
connected neurons to minimise the loss (Wang 2003).

The architecture of the proposed NN for defective
segment identification comprises one input layer, four
hidden layers and one output layer, as shown in Figure
7. Inputs to the NN are the extracted PCA features or
MFCC features. A Rectified Linear Unit (ReLU) activation
function (Nair and Hinton 2010) is used in all hidden
layers. The L2 regularisation is chosen as 0.001 and is
used in every hidden layer to avoid the overfitting
problem (Cortes, Mohri, and Rostamizadeh 2012). See

Section 3.2.4 for the experiments leading to such a
framework.

2.4.5. Convolutional neural network (CNN)
CNN is analogous to traditional NN, comprised of convo-
lutional, pooling, and fully connected layers. The main
difference between CNN and traditional NN is that the
input of CNN comprises images, and the neurons of
CNN layers are three-dimensional-height, width, and
depth information to the images (O’Shea and Nash
2015).

The architecture of the proposed CNN for defective
segment identification comprises one convolutional
layer, one pooling layer, one fully connected layer, and
one output layer, as shown in Figure 8. Both the PCA
and MFCC features are converted into input images.
The convolutional layer consists of 13 and 5 filters for
PCA and MFCC feature-based models, respectively. The
size of each filter is 3× 3. The Fully Connected (FC)
layer contains 64 neurons to connect all the activation
of previous layers. One dropout (0.3) is added after the
FC layer to avoid overfitting. The final architecture is
optimised with a suitable stride of 2× 2 and regularis-
ation (ReLU) of 0.001. One convolutional layer was
sufficient for this application, as having two yields no
significant accuracy improvement. See Section 3.2.5 for
the experiments leading to such a framework.

3. Experimental results

In this section, experiments are conducted to determine
the range curvature threshold for dataset labeling and
the hyperparameters for the various proposed ML
models for identifying geometrically defective bead seg-
ments during the WAAM process. Using the hyperpara-
meters, a set of ML models is trained based on the
identified feature parameters. A comparative study of
all the trained models is subsequently evaluated for
their defect identification performance.

3.1. Threshold selection for dataset labeling

The dataset labeling seeks to separate the dataset into
good and bad bead segments based on their range

Figure 7. The proposed NN Architecture for defective bead segments identification.
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curvature. As explained previously, this can be achieved
by searching through a set of range curvature threshold
values that yield minimal overlapping area formed by
the Kernel Density Estimates (KDEs) of the resulting
good and bad bead segments. Figure 9 shows the KDE
distribution plots for range curvature thresholds of
0.55, 0.85, and 0.95, and the relationship of different
range curvature thresholds with their associated over-
lapping areas. Notice that each of the KDE plots yields
different overlapping areas. The overlapping area is
minimal when the range curvature threshold is 0.85
mm. Thus, based on this threshold, any bead segments
above this value are considered bad, and vice versa.

The dataset after the curvature-based labeling consists
of 415 (62%) good bead segments and 245 (38%) bad
bead segments.

3.2. Choice of hyperparameters

In the following, various experiments are conducted to
determine the set of hyperparameters suitable for the
KNN, SVM, RF, NN, and CNN defect detection model.

3.2.1. Hyperparameters for KNN
Figure 10 shows the effects of the KNN hyperparameters
on the resulting classification error for both the PCA and

Figure 8. The proposed CNN Architecture for defective bead segments identification.

Figure 9. Distribution plots for good and bad segments of beads for different thresholds (First three plots). Different thresholds vs
overlapping area plot(last plot).
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MFCC features. The hyperparameters include the
number of nearest neighbours K and the weight func-
tion. To find the optimal K and required weight function,
experiments are conducted to determine the classifi-
cation error over a range of K and weight function.
Two weight functions, the ‘uniform’ or ‘distance’, are
explored. Five-fold cross-validation is performed on the
training dataset for K = 1, . . . , 50 with the two weight
functions, and the average validation classification
error based on the PCA and MFCC features is plotted.
The results show that the lowest classification error
with PCA features is around 0.156 when K = 11 with a
‘uniform’ weight function. Similarly, the lowest classifi-
cation error with MFCC features is around 0.138 when
K = 31 with a “distance-weight function.

3.2.2. Hyperparameters for SVM
Figure 11 shows the effects of the SVM hyperparameters
on the resulting classification error for both the PCA and
MFCC features. The hyperparameters include a par-
ameter γ that determines how far the influence of a
single training example reaches, the regularisation par-
ameter C, and the kernels. To find the optimal γ, C,

and required kernel function, experiments are con-
ducted to determine the classification error over a
range of γ, C, and kernels. Two kernels based on Radial
Basis Function (RBF) and Sigmoid are explored. Five-
fold cross-validation is performed on the training
dataset for g = 0.01 . . . 1.5 and C = 0.01 . . . 1.5 with
the two kernel functions. The average validation classifi-
cation error is plotted using PCA and MFCC features. The
results show that the lowest classification error with a
PCA feature occurs when g = 0.7 and C = 1.1 with an
RBF kernel. Similarly, the lowest classification error with
an MFCC feature occurs when g = 0.01 and C=1.48
with an RBF kernel.

3.2.3. Hyperparameters for RF
Figure 12 shows the effects of the RF hyperparameters
on the resulting classification error for both the PCA
and MFCC features. The hyperparameter consists of
the number of trees used. Similarly, to find the optimal
number of trees, five-fold cross-validation is performed
on the training dataset as the number of trees varied
from 1 to 350. The average validation classification
error is plotted using PCA and MFCC features. The

Figure 10. KNN classification error based on the number of nearest neighbour K and weight function for PCA features (top plot) and
MFCC features (bottom plot).
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results show that the lowest classification error with a
PCA feature is around 0.160 with 150 trees. Similarly,
the lowest classification error with MFCC features is
around 0.149 with 60 trees.

3.2.4. Hyperparameters of NN architecture
Figure 13, Tables 2, and 3 show the effects of the NN
hyperparameters on the resulting classification accuracy

for both the PCA and MFCC features. The hyperpara-
meters consist of the number of layers and neurons in
each layer. Experiments are conducted to determine
the validation accuracy as the number of layers and
neurons varies to find the optimal number of layers
and study the impact of the number of neurons in
each layer. Five-fold cross-validation is performed on
the training dataset as the number of layers varied

Figure 11. SVM classification error based on the choice of γ and C for the RBF and Sigmoid kernels with PCA features (top) and MFCC
features (bottom).

Figure 12. RF classification error based on the number of trees for PCA features (left plot) and MFCC features (right plot).

VIRTUAL AND PHYSICAL PROTOTYPING 13



from 1 to 5. The average validation classification accu-
racy is plotted based on PCA and MFCC features. The
results show the 4-layer NN provides the highest classifi-
cation accuracy based on the PCA and MFCC features.

Similarly, different combinations of neurons within a
4-layer NN are studied. In general, it is found that the
validation accuracy is insensitive to neuron changes,
with about 1% change based on the combinations
tried. For PCA features, the 4-layer neurons combination
of (256, 128, 64, 32) provides the highest classification
accuracy. Similarly, for MFCC features, the 4-layer
neurons combination of (256, 128, 64, 16) provides the
highest classification accuracy.

3.2.5. Hyperparameters of CNN architecture
Figure 14 shows the effects of the CNN hyperparameters:
‘the number of filters in the convolutional layer’ on the
resulting classification accuracy for both the PCA and
MFCC features. To find the optimal number of filters,
experiments are conducted to determine the classifi-
cation accuracy as the number of filters varies. Five-
fold cross-validation is performed on the training data
set as the number of filters varied from 1 up to 40. The
average validation classification error is plotted based

on PCA and MFCC features. The results show that the
highest classification accuracy with a PCA feature
occurs at 13 filters. Similarly, the highest classification
accuracy with MFCC features occurs at 5 filters.

3.3. Training mechanism

With the set of hyperparameters for the various ML
models determined in the earlier sections, a five-fold
cross-validation (stratified k-fold) (Cawley and Talbot
2003) is used to train the defect detection models
based on PCA and MFCC features, using the Inconel
718 bead segment dataset. For training on the NN and
CNN model, adam optimiser (Kingma and Ba 2014)
with sparse categorical cross-entropy loss, and the
value of 0.0001 is used as the learning rate.

3.3.1. Defect identification models training based
on PCA features
Figure 15 shows the average validation accuracy for
each of the defect identification models as the principal
components of the acoustic signal varied from 1 to 25.

Note that for the number of principal components
taken as a feature, the average accuracy is based on

Figure 13. NN Classification accuracy based on the number of layers of a NN architecture for PCA features (left plot) and MFCC fea-
tures (right plot).

Table 2. Different Combination of number of neurons for PCA
+NN.
layer 1 layer 2 layer 3 layer 4 validation accuracy

256 128 64 32 84.1
192 128 64 32 83.6
128 128 64 32 83.1
256 82 64 32 83.9
256 100 64 32 84.2
256 128 64 32 84.4
256 128 64 32 84.5
256 128 56 32 83.6
256 128 48 32 83.5
256 128 64 32 84.1
256 128 64 24 83.06
256 128 64 16 82.59

Table 3. Different Combination of number of neurons for MFCC
+NN.
layer 1 layer 2 layer 3 layer 4 validation accuracy

256 128 64 16 83.7
192 128 64 16 83.5
128 128 64 16 83.2
256 82 64 16 83.4
256 100 64 16 83.6
256 128 64 16 82.8
256 128 64 16 83
256 128 56 16 82.4
256 128 48 16 82.1
256 128 64 32 81.8
256 128 64 24 82.2
256 128 64 16 82.9
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the average of 30 randomly selected dataset of 60%
training, 25% testing, and 15% validation. As shown
from the results, the average validation accuracy
increases at the beginning and reaches around 87% to
90% (depending on the type of ML model used). It
shows that the first four components of PCA when com-
bined as a feature, yield the most accurate prediction for
KNN, SVM, NN, and CNN models. Similarly, the first six
components of PCA when combined as a feature, yield
the most accurate prediction for RF model.

Figure 16 shows the loss curve for NN and CNN
models. Notice that both the training and testing loss
decrease the number of epochs increase. It seems that
after 35 epochs, both training and validation loss
become stable with a small gap, indicating that the
model had been trained without over-fitting. Thus, the
training stops at 35 epochs.

3.3.2. Defect identification models training based
on MFCCs features
Figure 16 shows the loss curve for the NN and CNN
models. Notice that both training and testing loss
decrease as the number of epochs increases. Similar to
the PCA features, both training and testing loss
become stable with a minimum gap after 35 epochs,
and no overfitting are observed. Thus, the training
stops at 35 epochs.

3.4. Performance evaluation of defect detection
model based on F1 score, precision, recall and
confusion matrix

To test the resulting trained defect detection model per-
formance, the various models are evaluated based on

Figure 14. CNN classification accuracy based on the number of filters within its architecture for PCA features (left plot) and MFCC
features (right plot).

Figure 15. Average validation accuracy for the different defect identification models vs the number of principal components used as a
feature.
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their F1 score, precision, recall, and confusion matrix.
The reason for using these metrics is that they are
useful in evaluating the performance of an imbalanced
dataset. Table 4 shows the comparative study performed
on the resulting defect identification models based on
F1 score, precision, and recall.

It is observed that the MFCC feature with an
SVM model (MFCC+SVM) has the highest F1 score
among all the defect identification models, at
around 84%.

Table 5 shows the comparative study performed on
the resulting defect detection models based on the

confusion matrix, which measures the truly good and
bad segments picked out by the models. It shows
that the PCA feature with a KNN model (PCA+KNN)
can pick out the most number of true bad bead seg-
ments at 186.

Figure 16. The loss curve for PCA+NN and MFCC+NN (top) The loss curve for PCA+CNN and MFCC+CNN (bottom).

Table 4. Comparative study of all of the proposed defect
identification model based on F1 score, precision, and recall.
Defect Identification
Model F1 Score Precision Recall

PCA+KNN 80.59+ 0.05 81.86+ 0.03 80.06+ 0.11
PCA+SVM 83.50+ 0.08 87.06+ 0.08 81.29+ 0.06
PCA+RF 80.71+ 0.04 81.18+ 0.03 80.21+ 0.11
PCA+NN 82.80+ 0.03 84.41+ 0.08 82.11+ 0.05
PCA+CNN 82.26+ 0.06 84.63+ 0.03 80.01+ 0.05
MFCC+KNN 83.19+ 0.08 87.15+ 0.06 81.62+ 0.07
MFCC+SVM 84.24+ 0.08 88.65+ 0.06 82.65+ 0.01
MFCC+RF 84.18+ 0.03 87.28+ 0.03 82.10+ 0.07
MFCC+NN 81.21+ 0.17 82.44+ 0.05 80.67+ 0.02
MFCC+CNN 79.45+ 0.07 82.55+ 0.08 77.44+ 0.11

Table 5. Comparative study of all of the proposed defect
identification model based on Confusion Matrix.

Defect Identification Model True

Good Bad

PCA+KNN Predicted Good 354 59
Bad 61 186

PCA+SVM Predicted Good 400 83
Bad 15 162

PCA+RF Predicted Good 366 68
Bad 49 177

PCA+NN Predicted Good 381 68
Bad 34 177

PCA+CNN Predicted Good 388 77
Bad 27 168

MFCC+KNN Predicted Good 393 75
Bad 22 170

MFCC+SVM Predicted Good 405 80
Bad 10 165

MFCC+RF Predicted Good 395 73
Bad 20 172

MFCC+NN Predicted Good 369 76
Bad 46 169

MFCC+CNN Predicted Good 399 77
Bad 16 168
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4. Conclusion

In this paper, a methodology for constructing the geo-
metric defect detection model to identify defective
bead segments using acoustic sensing for the WAAM
process is proposed. The performance of ten of such
models is evaluated, and the results have demon-
strated they can able to identify geometrically defec-
tive segments accurately (80% to 85%) when tested
on the Inconel 718 dataset. Among the various
trained defect detection models, it is found that
having MFCC acoustic features with support vector
machine performs the best in terms of F1 score, and
having principal components as an acoustic feature
with K nearest neighbour performs the best based on
the confusion matrix. The first novelty of this research
lies in the defects that are targeted. Geometric defects
are a unique problem in WAAM due to their sensitivity
to process variation. A bead produced using a constant
process parameter would produce bead segments of
different geometrical shapes due to environmental
factors. This would lead to voids and affect the final
part performance if left untreated. The second
novelty lies in the segment-wise geometric defect
detection approach. By discretizing defect detection,
it has the benefit of identifying a localised defect
more accurately so that early intervention can be poss-
ible. The third novelty lies in the dataset labeling
approach of geometric defects, where good and bad
bead segments are separated based on a threshold
of the range of mean curvature determined through
a heuristic search. Currently, labeling for AM defects
is based on a visual inspection approach, which is
error-prone and time-consuming when the dataset is
large. Here an approach to determine an optimal
threshold for labeling based on overlapping areas of
KDE distribution is proposed to separate good and
bad segments. For future work, the authors intend to
explore the inclusion of other features, such as the
WAAM process parameters, to further increase the
defect detection performance. The goal is to
implement this approach for defect detection during
real-life printing.

Notes

1. https://librosa.org/
2. https://scipy.org//
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