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ABSTRACT
Additive Manufacturing (AM) is gaining popularity in the

industry for its cost-effectiveness and time-saving benefits. How-
ever, AM encounters challenges that need to be addressed to en-
hance its efficiency. While Machine Learning (ML) can tackle
various AM challenges, it is often limited to specific issues, ne-
cessitating multiple models. In contrast, Generative Artificial In-
telligence (GenAI) has the potential to mitigate instance-specific
bias due to its broader training. This paper presents a compre-
hensive methodology for evaluating the capabilities of various
existing GenAI tools in addressing diverse AM-related tasks. We
propose three categories of metrics, totaling 35 metrics, namely
agnostic, domain task, and problem task metrics. Additionally,
we introduce a scoring matrix, a practical tool that can be used
to assess the responses of different GenAI tools. The study in-
volves data collection from diverse published papers, which are
used to create inquiries for GenAI tools. The results demonstrate
that transformer-based models, such as multi-modal GPT-4 and
Gemini (prev. BARD), can handle both AM image and text data.
In contrast, uni-modals such as GPT-3 and Llama 2 are pro-
ficient in processing AM text data. Furthermore, image-based
models such as DALL·E 3 and Stable Diffusion can accept AM
text data and generate images. It is also observed that the perfor-
mance of these models varies across different AM-related tasks.
The variation in their performance may be due to their underly-
ing architecture and the training dataset.

1 INTRODUCTION
Additive manufacturing (AM), also known as 3D printing,

refers to a class of manufacturing process technologies associ-
ated with direct digital fabrication of complex geometrical ob-

jects from Computer-Aided Design (CAD) models using a lay-
ered manufacturing process. AM can be defined as “a pro-
cess of joining materials to make objects from 3D model data,
usually layer upon layer, as opposed to subtractive manufactur-
ing methodologies” [1]. AM has several advantages over tradi-
tional manufacturing production techniques, including fabricat-
ing complex parts, achieving lightweight design, expediting and
reducing production and delivery lead times [2]. Metal Addi-
tive Manufacturing (MAM) has gained prominence in various
industries, particularly in sectors such as aerospace, defence,
medicine, and energy, where unique challenges are met with
unique solutions. As fabricated from digital manufacturing pro-
cesses, AM-fabricated parts result in increasingly complex data
streams from design to product transformation. These diverse
data sets from AM processes contain valuable and actionable in-
sights that can be used for deeper understanding and enhanced
control of the AM process.

Machine Learning (ML) models play an important role in
addressing various challenges within the design to product trans-
formation in AM. The ML models, such as Neural Networks
(NN), clustering, and Convolutional Neural Network (CNN)
methods, are used for design [3,4,5], build precision, process pa-
rameter selection, optimization, part density prediction, [6,7] etc.
ML models are also used in defect detection, process monitoring,
and process control [8, 9, 10]. Moreover, ML models contribute
to the study of dimensional variation classification [11, 12, 13].
The importance of ML in the AM domain is growing day by day.
Figure 1 shows the increasing number of papers related to ML in
AM. Most of the ML models applied in AM are domain and task-
dependent. Each ML model is designed to handle specific issues,
constituting a “bottom-up” approach. This approach implies the
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FIGURE 1: Number of ML papers in AM domain over time.
Source: https://app.dimensions.ai/, Criteria: Machine
learning in Additive Manufacturing

development of focused, domain-driven applications based on
particular needs and opportunities. Consequently, different ML
models are required to tackle different problems in AM. More-
over, most of the time, the ML models used in the AM domain
are incapable of handling different modalities of data files. While
some researchers have begun exploring multi-modal data han-
dling in AM [14], these efforts remain limited, and these models
are generally designed to tackle specific issues. Furthermore,
most ML models available in the AM domain lack transparency
regarding their details, such as training data sources, working
environments, and real-world applications. Often, training data
are inaccessible and non-reproducible. Therefore, utilizing pub-
lished models with a different dataset may yield varying results
due to variations in the dataset.

In such scenarios, Generative Artificial Intelligence (GenAI)
emerges as a promising multi-task solution. GenAI is a more ag-
nostic, top-down approach, where algorithms are initially trained
on a broad range of data before narrowing a focus to a specific
task. Because of its top-down approach, GenAI has the potential
to improve upon single-task ML approaches by expanding solu-
tion spaces and reducing bias from focused training data. GenAI,
through multi-modal tools, can process various data types (e.g.,
images, videos, and acoustic signals) and solve various problems
simultaneously. Thus, it eliminates the need for multiple spe-
cialized models, as a single GenAI tool can potentially handle
different modalities of data and address various issues related to
AM at the same time.

To evaluate the effectiveness of existing GenAI tools in ad-
dressing MAM tasks, three types of benchmarking task met-
rics: agnostic, domain task, and problem task, totaling 35 met-
rics, are proposed. These metrics are selected based on various
GenAI opportunities or dimensions within the four exploration
spaces (Figure 2). In this paper, we evaluate six popular GenAI
tools, namely GPT-4, GPT-3.5, Gemini (prev. BARD), Llama
2, DALL·E 3, and Stable Diffusion. The primary contribution is

proposing an initial set of metrics on which benchmarking can
be performed. We also propose a scoring matrix to quantify the
performance of each tool. To score these metrics, we develop
a variety of text-based and image-based prompts based on pub-
lished AM-related literature for the GenAI tools. We then assess
the responses generated by these tools and benchmark their per-
formance based on the obtained scores.

2 BACKGROUND AND LITERATURE REVIEW
In this section, we will discuss GenAI and its subdivision

based on different criteria and 6 different popular GenAI models.

2.1 Generative Artificial Intelligence (GenAI) and Its
Classification

Generative Artificial Intelligence (GenAI) refers to algo-
rithms capable of generating novel, creative and realistic con-
tent, including images, audio, video, and 3D models, replicat-
ing real data distributions [16]. In exploring and bench-marking
GenAI, in this paper, we categorize GenAI based on the archi-
tecture shown in Figure 3 and modality shown in Figure 4.

The classification of GenAI models based on their archi-
tecture provides insights into their fundamental components
and training methods. For instance, Variational Autoencoders
(VAEs) adopt an encoder-decoder architecture and employ vari-
ational inference during training. Generative adversarial net-
works (GANs) leverage adversarial training, featuring a gen-
erator and discriminator for creating realistic and diverse data.
Diffusion models involve a noising and denoising process, itera-
tively refining noisy inputs for high-quality samples. Transform-
ers, with encoder-decoder architecture and self-attention mech-
anisms, capture global dependencies through supervised train-
ing. Language models, often based on recurrent neural networks
(RNNs), generate natural language sequences by predicting the
next token through supervised learning. Normalizing flow mod-
els use coupling layers for data transformation while preserving
density and learning complex distributions. Hybrid models com-
bine various architectures and training methods by integrating
elements from multiple models [17].

The classification of GenAI models based on modality pro-
vides insights into their ability to process specific data types like
text, images, audio, or video. Uni-modal models generate results
in the same format as the input prompts. For example, GPT-3.5
utilizes text-to-text generation, and GAN, VAE, and Normaliz-
ing Flow utilize image-to-image generation. Multi-modal mod-
els can process prompts from various modalities and generate
results in multiple modalities. These models handle both input
and output of different modalities (e.g., image-to-text) or multi-
modal inputs (e.g., processing both text and images) and outputs
(e.g., generating both text and images). Examples of multi-modal
models include the use of DALL·E and VisualBERT for text-to-
image generation, AdaSpeech for text-to-audio, KG-BERT for
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FIGURE 2: Digital flow of AM and Generative AI dimensions in each AM phase, with selected metrics under these dimensions. Adapted
from [15]

FIGURE 3: Classification of GenAI based on Architecture

FIGURE 4: Classification of GenAI based on Modality

text-graph processing, and CodeBERT and CodeX for text-to-
code generation [18].

2.2 Current State of GenAI in AM
Different GenAI models are currently utilized to address di-

verse challenges across different phases of AM.
In the design domain, NASA GSFC developed a lightweight

generative design process to demonstrate potential savings in de-
velopment time and mass [19]. Elbadawi et al. [20] utilized

conditional generative adversarial networks (cGANs) to facilitate
Fused Diffusion Model (FDM) printing. For topology optimiza-
tion, Hertlein et al. [21] developed a cGAN-based framework to
predict optimal designs for AM without overhangs. In monitor-
ing and control, Petrik et al. [22] introduced MeltPoolGAN for
classifying melt pool images and optimizing process parameters.
Mu et al. [23] developed an adaptive online simulation model
using a diffusion-based Generative AI model and laser-scanned
point clouds to predict distortion fields in new deposition cases.
The model served as a foundation for model-based control sys-
tems, topology optimizations, and advancements in metallic ad-
ditive manufacturing design and technology (AM-DTs). Liu et
al. [24] developed an image-enhancement generative adversarial
network (IEGAN) to improve the quality of thermal images for
image segmentation.

Beyond the facilitation of the design-to-product transforma-
tion, researchers also leverage GenAI tools for studying AM soft-
ware and fundamentals. Badini et al. [25] assessed the capa-
bility of GPT for optimizing G-code and printing parameters in
Fused Filament Fabrication (FFF) AM. Jignasu et al. [26] used
six GenAI tools to comprehend and debug G-code files for 3D
printing. Fang et al. [27] employed ChatGPT and BERT to en-
hance the accuracy of a graph for recycled metal powder.

2.3 GenAI Models Examples
In this section, we provide short descriptions of some of the

most prominent GenAI models.

2.3.1 GPT-4 & GPT-4V GPT-4 (Generative Pre-trained
Transformer 4) [28] is a state-of-the-art transformer-based lan-
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FIGURE 5: Combined classification of GenAI tools

guage model trained on a large amount of text and image data. It
employs a transformer architecture to generate human-like text
based on its input. An extension of GPT-4, or GPT-4V, incorpo-
rates vision capabilities [29], enabling it to process and generate
responses based on textual and visual modalities. Therefore, the
GPT-4 model can handle AM text and image data.

2.3.2 GPT-3.5 GPT-3.5 (Generative Pre-trained Trans-
former 3.5) is a language model developed by OpenAI, which
serves as precursor [30] to GPT-4. GPT-3.5 has been trained on
a larger dataset and features several improvements over its pre-
decessors. Unlike GPT-4, GPT-3.5 has no integrated vision ca-
pabilities and focuses solely on processing and generating text.
Therefore, GPT-3.5 can handle only AM text datasets.

2.3.3 Gemini (Previously Bard) Google Gemini,
previously known as Bard, is a conversational AI model built on
the foundation of LaMDA (Language Model for Dialogue Appli-
cations) [31]. It’s unique in its ability to process both images and
text as input and generate text as output. This versatility enables
it to effectively handle both AM image and text data.

2.3.4 Llama 2 (Large Language Model Meta AI)
Llama 2 is an updated version of Meta AI’s original Llama

model [32]. It is open access for research and commercial use. It
can only handle AM text data.

2.3.5 DALL·E DALL·E, an AI model by OpenAI [33],
is a generative model that produces images from textual descrip-
tions. As a result, it’s capable of generating AM image data
based on textual input.

2.3.6 Stable Diffusion (SD) Stable Diffusion, a latent
text-to-image diffusion model, is a collaborative development by
Stability AI, Runway, and CompVis [34]. SD can generate AM
image files based on textual input.

The combined classification of the above-mentioned GenAI
models based on architecture and modality is shown in Figure 5.

3 METRICS FOR BENCHMARKING GENAI TOOLS
In this section, we introduce three distinct types of metrics

based on the GenAI opportunities or dimensions across the four
phases of the AM process (Figure 2) for benchmarking existing
GenAI tools. The selection of metrics is primarily guided by

the complexity of AM tasks across these phases: Design, Pro-
cess Plan, Build and Monitoring, and Testing. These four phases
are a simplified version of the eight phases proposed by Kim et
al. [35].

1. Agnostic Metrics: These are characterized by their indepen-
dence from any particular AM phase or task. They offer a
broad perspective on overall performance without being tied
to specific processes or stages.

2. Domain Task Metrics: These refer to the generic tasks or ac-
tivities directly related to the specific domain or phase within
AM. They are independent of a specific problem but depend
on certain AM phases.

3. Problem Task Metrics: These refer to the challenges or is-
sues that arise within the specific AM domain or phase re-
quiring problem-solving skills. These tasks are generally
more complex and specific than domain tasks. They depend
on both AM phases and particular problems.

A scoring matrix is also introduced for all metrics to evaluate
responses from various GenAI tools. Therefore, the metrics and
scoring matrix create a robust and reliable approach for assessing
the effectiveness of GenAI tools in AM.

The following section explains all three distinct types of
metrics and their corresponding scoring metrics.

3.1 Agnostic Metrics
Given the general applicability of many GenAI tools, the ag-

nostic performance metrics were an important starting point for
providing a baseline capability evaluation. While AM has several
distinct phases, many of the problem types remain the same, par-
ticularly in the context of the exploration of solution space and
the data processing requirements. Except for two closely related
ones, each of the tools here is based on different GenAI models
with approaches to tasks and different adaptations of architec-
tures. To establish a baseline of tool capability, five separate per-
formance metrics were selected: The number of supported input
data types, number of supported output data types, data compat-
ibility ratio, response time for text, and response time for image
generation.

These five metrics were chosen to give general insight into
the basic utility of the different GenAI tools, including assessing
how well they support different types of data and what relative
response times might be. These metrics were selected to provide
insight into the general capabilities of the GenAI tools before a
deeper dive is performed in the domain-specific areas.
3.2 Domain Task Metrics

The domain-specific metrics across the four distinct AM
phases were important for evaluating GenAI tools. In this sec-
tion, fifteen domain task metrics have been suggested.

3.2.1 Design For the Design phase, four metrics (Ta-
ble 2) were introduced to evaluate the performance of GenAI
tools. These metrics were chosen to offer insights into how well
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TABLE 1: Agnostic metrics with scoring matrix

Metrics Scores
5 4 3 2 1

Number of sup-
ported input data
types

5 ≤ 4 3 2 1

Number of sup-
ported output data
types

5≤ 4 3 2 1

Data compatibility
ratio

5≤ 4 3 2 1

Response time for
text

≤ 1 s ≤ 5 s ≤ 10 s ≤ 30 s 30 s≤

Response time for
image generation

≤ 1 s ≤ 5 s ≤ 10 s ≤ 30 s 30 s≤

GenAI tools perform in design domain-specific tasks. These in-
clude their ability to generate 3D models, recognize powder im-
ages used in AM, answer design-related questions, and identify
support structure images, etc.

As would be expected, much of the design phase evaluation
focuses on assessing a tool’s ability to interpret and manipulate
geometry. The metrics chosen for the design phase were meant
to investigate some specific challenges of the design phase, such
as the ability to process geometry for topological optimization,
the ability to differentiate between similar but different shapes as
might be encountered in feedstock evaluation, and the ability to
distinguish between similar but different geometries, as might be
encountered in support structure development.

TABLE 2: Domain task metrics: Design and their corresponding
scoring matrix

Metrics Scores
5 4 3 2 1

Generate
3D
Model

3D
model in
chosen
format

Model
instruc-
tions

Incomplete
design

3D
image

Unable
to gener-
ate

Identify
powder
image

Identify
as pow-
der
image

Identify
similar
image
type

Contextu-
alization,
no iden-
tification

Incorrect
Contex-
tualiza-
tion

No Con-
text,
Un-
able to
identify

Respond
to design
questions

Respond
to all
questions

Respond
one less
than all
questions

Respond
two less
than all
questions

Respond
to less
than half
questions

Unable
to re-
spond

Identify
support
structure
from
image

Able to
identify

Contextu-
alization,
no iden-
tification

Partially
contextu-
alization,
no iden-
tification

Incorrect
Contex-
tualiza-
tion

No con-
text,
Un-
able to
identify

3.2.2 Process Plan For the Process Plan phase, four
metrics (Table 3) were chosen to evaluate GenAI tools. The focus
of choosing these metrics was on assessing the performance of
GenAI tools for selecting the number of process parameters (PP)
for Powder Bed Fusion (PBF), Selective Laser Melting (SLM),
and Wire Arc Additive Manufacturing (WAAM) processes. Ad-
ditionally, an assessment was made to determine whether GenAI
tools can predict the interrelation among various process param-
eters in the PBF process.

The process planning and processing stages are the two
most technology-dependent phases in the AM life cycle. Sub-
sequently, during these phases, the data types and problems pre-
sented may differ significantly, and some insight into those po-
tential differences is important. Perhaps more than any other
stage, the process planning stage benefits from simulation and
exploration of parameter settings; thus, the ability to explore
large parameter configurations and simulated time series data
may be important.

TABLE 3: Domain task metrics: Process Plan and their corre-
sponding scoring matrix

Metrics Scores
5 4 3 2 1

Select
PBF pa-
rameter

Select
max-
imum
number

Select
one
under
max

Select
two
under
max

Select
three or
more
under
max

Unable
to select

Select
SLM pa-
rameter

Select
max-
imum
number

Select
one
under
max

Select
two
under
max

Select
three or
more
under
max

Unable
to select

Select
WAAM
parame-
ter

Select
max-
imum
number

Select
one
under
max

Select
two
under
max

Select
three or
more
under
max

Unable
to select

Identify
process
param-
eter
relation-
ships

Select
max-
imum
number

Select
one
under
max

Select
two
under
max

Select
three or
more
under
max

Unable
to select

3.2.3 Build and Monitoring For the build and moni-
toring phase, three metrics (Table 4) were suggested for assessing
the GenAI tool’s capability, including the identification of melt
pools and thermal images and the response time of the identifi-
cation for real-time monitoring tasks.

More than the other three phases, the time element was
emphasized in building and monitoring metrics, specifically to

5 Copyright © 2024 by ASME



gauge the potential for these tools to be used in real or near real-
time responses. As the building and monitoring phases also rely
on large amounts of time series sensor data, this evaluation also
emphasized the ability to handle time series data and different
data types.

TABLE 4: Domain task metrics: Build and Monitoring and their
corresponding scoring matrix

Metrics
Scores

5 4 3 2 1

Identify
melt pool
image

Identify
melt pool
image

Recognize
a similar
form of
image

Contextual-
ization,
no iden-
tification

Incorrect
Context,
no iden-
tification

Unable
to select

Identify
thermal
image

Identify
thermal
image

Recognize
a similar
form of
image

Contextual-
ization,
no iden-
tification

Incorrect
Context,
no iden-
tification

Unable
to select

Average
Identi-
fication
time

≤ 1 s ≤ 5 s ≤ 10 s ≤ 30 s 30 s≤

3.2.4 Testing For the Testing phase, four metrics (Ta-
ble 5) were proposed to give insight into the utility of the GenAI
tools in recognizing scanning electron microscopy (SEM), high-
resolution camera, and X-CT images, along with their ability to
respond to post-processing and testing-related questions.

Tasks in the testing phase will focus on identifying abnor-
malities or defects in parts through techniques such as optical
measurements or XCT. Such tasks will likely benefit from the
ability to identify and operate on thresholds. Another challenge
at the testing level is the ability to interpret and differentiate be-
tween two-dimensional and three-dimensional geometries. This
phase may rely on statistical data more than any other phase due
to the need to assess material properties.

3.3 Problem Task Metrics
The problem-specific metrics across the four distinct AM

phases were important for evaluating GenAI tools. In this sec-
tion, fifteen problem task metrics have been proposed.

3.3.1 Design For the Design phase, four metrics (Ta-
ble 6) were proposed to determine whether GenAI tools can gen-
erate complex 3D models with specific measurements, classify
different powders and select optimal support structures based on
their images. Additionally, an investigation was conducted into
whether various design-related questions can be responded to ac-
curately by the GenAI tools.

Generating 3D models with specific measurements is impor-
tant for producing manufactured parts that meet specific require-

TABLE 5: Domain task metrics: Testing and their corresponding
scoring matrix

Metrics
Scores

5 4 3 2 1
Identify
SEM
image

Identify
as SEM
image

Recognize
a similar
form of
image

Contextual-
ization,
no iden-
tification

Incorrect
Contex-
tualiza-
tion

No con-
text,
Un-
able to
identify

Identify
high-
resolution
camera
image

Identify
as high-
resolution
camera
image

Recognize
a similar
form of
image

Contextual-
ization,
no iden-
tification

Incorrect
Contex-
tualiza-
tion

No con-
text,
Un-
able to
identify

Identify
X-CT
image

Identify
as X-CT
image

Recognize
a similar
form of
image

Contextual-
ization,
no iden-
tification

Incorrect
Contex-
tualiza-
tion

No con-
text,
Un-
able to
identify

Respond
to testing
questions

Respond
to all
questions

Respond
one less
than all
questions

Respond
two less
than all
questions

Respond
to less
than half
questions

Unable
to re-
spond

ments accurately and precisely. Again, the classification of pow-
der aids in comprehending the properties, quality, and character-
istics of the final printed parts. Furthermore, carefully selecting
optimal support structures is essential to minimize material waste
during printing.

3.3.2 Process Plan For the Process Plan phase, four
metrics (Table 7) were proposed to evaluate the performance of
GenAI tools for selecting suitable process parameter ranges for
PBF, SLM, and WAAM processes. Assessment was also made
regarding accurately identifying relationships among different
process parameters for PBF.

Since each AM technique has unique characteristics, mate-
rial requirements, and process dynamics, it is important to select
an appropriate process range for each AM method. This selec-
tion enables control over factors like melting and solidification
rates, defect minimization, and maintaining build speed.

3.3.3 Build and Monitoring For the Build and Moni-
toring phase, three metrics (Table 8) were proposed to determine
how well the GenAI tools calculate melt pool area and detect
anomalies from melt pool and thermal images.

Defect detection in real-time saves material resources and
allows for immediate corrective actions during the printing pro-
cess. Calculating the melt pool area is also important as it reflects
the current state of the AM process and is directly related to the
quality of the final parts.
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TABLE 6: Problem task metrics: Design and their corresponding
scoring matrix

Metrics
Score

5 4 3 2 1

Generate
dimen-
sioned
3D
model

3D
model
for
chosen
format

Model
instruc-
tion

Incomplete
design

3D
image

Unable
to gener-
ate

Classify
AM
powder
from
images

Able to
classify

Provide
hint, no
exact
classifi-
cation

Contextual-
ization,
no classi-
fication

Incorrect
Contex-
tualiza-
tion, no
classifi-
cation

Unable
to clas-
sify

Number
of cor-
rect
answers

Correctly
an-
swers all
questions

One
incorrect
answer

Two
incorrect
answer

Three
incorrect
answer

Unable
to correct
answer

Select
optimal
support
from
image

Able to
select
that
matches
with
reference

Provides
hint, no
exact
selection

Contextual-
ization,
no selec-
tion

Incorrect
Contex-
tualiza-
tion, no
selection

Unable
to select

3.3.4 Testing For the Testing phase, four metrics (Ta-
ble 9) were proposed to give insight into the utility of the GenAI
tools to determine defects from SEM, high-resolution camera im-
ages, and porosity labels from X-CT images. Additionally, an
assessment was made regarding how well these GenAI tools ad-
dress testing-related questions.

The identification of defects from different sources during
testing phases is essential for evaluating the integrity, perfor-
mance, and reliability of the final product. Additionally, di-
verse testing-related information, methods for enhancing parts,
and equipment are crucial for assessing material properties.

4 RESULTS AND DISCUSSION
We collected images and information data from published

papers to create prompts [36, 37, 38, 9, 39, 40, 41, 42, 43]. We
used these prompts to generate responses five times for each
GenAI tool using their API because these tools tend to give dif-
ferent styles of responses each time. Hence, we reviewed these
responses to limit variability and chose the one closest to the
reference. Based on the response from these tools, we scored
each GenAI tool within each metric. This scoring helps us to
benchmark the tools by comparing the scores. All questions
and responses for scoring agnostic, domain task and problem
task metrics are available on GitHub: https://github.com/
nowrin0102/IDETC-2024. Note that we maintain the same
prompt for all the models for fair comparisons.

TABLE 7: Problem task metrics: Process Plan and their corre-
sponding scoring matrix

Metrics
Score

5 4 3 2 1

Select
laser
power
& scan
speed for
PBF

Select
both
exact as
reference

Select
both
close to
reference

Select
one
close to
reference

Contextual-
ization,
no selec-
tion

Unable
to select

Select
laser
power
& scan
speed for
SLM

Select
both
exact as
reference

Select
both
close to
reference

Select
one
close to
reference

Contextual-
ization,
no selec-
tion

Unable
to select

Select
torch
speed &
wire feed
rate for
WAAM

Select
both
exact as
reference

Select
both
close to
reference

Select
one
close to
reference

Contextual-
ization,
no selec-
tion

Unable
to select

Predict
process
param-
eter
correla-
tions

Predict
exact as
reference

Wrongly
predicts
one

Wrongly
predicts
two

Wrongly
predicts
at least
three

Unable
to select

TABLE 8: Problem task metrics: Build and monitoring and their
corresponding scoring matrix

Metrics
Score

5 4 3 2 1

Calculate
melt
pool area
from
image

Able to
calculate

Able to
calculate,
close to
actual
value

Existence
of melt
pool

Contextual-
ization,
no detec-
tion

Unable
to iden-
tify

Detect
anomaly
from
image

Able to
detect

Able to
detect
partially

Existence
of melt
pool

Contextual-
ization,
no iden-
tification

Unable
to iden-
tify

Identify
defect
from
thermal
image

Able to
identify

Recognise
a similar
form

Contextual-
ization,
no iden-
tification

Incorrect
Contextual-
ization,
no iden-
tification

Unable
to iden-
tify

4.1 Agnostic Metrics Results
In Figure 6, scores for various GenAI tools on agnostic met-

rics are summarized. Firstly, GPT-4 and Gemini support a more
diverse range of inputs (images, text, formulas, code, and math-
ematical expressions) compared to GPT 3.5 and Llama 2, which
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TABLE 9: Problem task metrics: Testing and their corresponding
scoring matrix

Metrics Scores

5 4 3 2 1

Identify
defect
from
SEM
image

Able to
identify

Recognize
a similar
form

Contextual-
ization
only

Incorrect
Contex-
tualiza-
tion

No Con-
text,
Un-
able to
identify

Identify
defective
part from
image

Able to
identify

Recognize
a similar
form

Contextual-
ization
only

Incorrect
Contex-
tualiza-
tion

No Con-
text,
Un-
able to
identify

Identify
porosity
from
X-CT
image

Able to
identify

Partial
identifi-
cation

Contextual-
ization
only

Incorrect
Contex-
tualiza-
tion

No Con-
text,
Un-
able to
identify

Under-
stand
testing
context

Correctly
an-
swer all
questions

One
incorrect
answer

Two
incorrect
answers

Three
or more
incorrect
answers

Unable
to correct
answer

cannot process image data. Furthermore, all four tools can gen-
erate text, formulas, code, and mathematical data used in AM as
output. Secondly, GPT-4 and Gemini can simultaneously handle
images and text data, providing a 2:1 data compatibility ratio.
Thirdly, GPT 3.5 exhibits faster responses than GPT-4 and Gem-
ini. Additionally, DALL·E 3 consistently takes longer to gener-
ate images than Stable Diffusion. It’s important to note that we
calculate response time in real-time using their API. Since the
response time may vary based on query size, bandwidth, server
load, etc., we provide scores instead of actual time duration.

4.2 Domain Task Metrics Results
In the Design results (Figure 7), it is observed that GPT-4

and GPT-3.5 can generate 3D models (.stl/OpenSCAD format
files), earning a score of 5. Gemini and Llama 2, though at-
tempting 3D file generation, often produce incomplete designs.
The proficiency of GPT-4 and GPT-3.5 in 3D model generation
may be attributed to diverse training datasets related to 3D print-
ing and design. Despite sharing a transformer-based architecture,
differences in the models’ structures could impact 3D model gen-
eration. DALL·E 3 and stable diffusion, being diffusion-based
models, can generate images of the specified objects but are lim-
ited to image generation. GPT-4 and Gemini, as multi-modal
models, can handle both image and text inputs and can identify
powder and support structures from images accurately. Notably,
all transformer-based models display proficiency in answering
design-related questions due to their text input processing capa-

FIGURE 6: Agnostics Metrics Evaluation

FIGURE 7: Domain task Evaluation: Design

bilities.
In the Process Plan results (Figure 8), Gemini and Llama2

can select the maximum number of process parameters for PBF
and WAAM, so they score 5. Additionally, Gemini achieves the
maximum score for selecting process parameters for SLM. This
is likely due to their extensive training on diverse process-related
datasets and ability to generalize to queries related to process
parameters of the AM process. Llama 2 can establish more re-
lationships between different process parameters for PBF than
others, indicating its understanding of these interconnections.

In the Build and Monitoring results (Figure 9), it is observed
that multi-modal models, GPT-4 and Gemini, can process the
melt pool and thermal image data. GPT-4 is able to identify both
melt pool and thermal images and achieve the maximum score,
while Gemini contextualizes the melt pool data but struggles to
identify thermal images. This could be attributed to either differ-
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FIGURE 8: Domain Task Evaluation: Process Plan

FIGURE 9: Domain Task Evaluation: Build and monitoring

ences in their training datasets, underlying architecture or model
size. It is also observed that the identification response time is
consistently faster for GPT 4, although, again, the response time
depends on the query size, bandwidth, server load, etc.

In Testing results (Figure 10), the multi-modal models GPT-
4 and Gemini are able to handle SEM, high-resolution camera
and X-CT images. GPT-4 can identify SEM and high-resolution
camera images, while Gemini can identify SEM images and con-
textualize them for high-resolution camera images. Moreover,
both GPT-4 and Gemini can contextualise the X-CT image data.
It is also observed that all the transformer-based models can an-
swer testing-related queries as they can handle text input.

4.3 Problem Task Metrics Results
In the Design results (Figure 11), it is observed that all tools

frequently generate incomplete or misleading designs, offering
suggestions on how to proceed. This may be due to their insuf-
ficient competence in generating complex 3D models, attributed
to the limitations of their training datasets and inherent architec-
ture. Although Gemini and GPT-4 can handle image data, they
show differences in their performance when classifying powder.
Gemini can provide hints for classifying powder from images
but doesn’t provide exact classification, while GPT-4 lacks this
capability. GPT-4 and Gemini both offer hints about potential

FIGURE 10: Domain Task Evaluation: Testing

FIGURE 11: Problem Task Evaluation: Design

support structure but cannot provide exact answers close to the
reference paper [44]. GPT-4 and Gemini can respond to design-
related questions closer to the reference than GPT-3.5 and Llama
2, yet none of the models can provide all correct answers. This
may be due to GPT-4 and Gemini having more extensive training
on design-related datasets than 3.5 and Llama 2.

In the Process Plan results (Figure 12), all transformer-based
models can predict the range of process parameters and the rela-
tionships among different parameters. GPT-4 and Gemini con-
sistently predict process parameter ranges close to the reference
compared to GPT 3.5 and Llama 2.

In Build and Monitoring results (Figure 13), both GPT-4 and
Gemini calculate melt pool area, though not precisely matching
the reference values. They can identify defective melt pool im-
ages based on a detailed prompt description. Gemini can explain
possible defects in thermal images, while GPT-4 shows incapa-
bility to identify anything.

In Testing results (Figure 14), none of the models can pre-
cisely identify defects from SEM images. GPT-4 guesses possi-
ble defects in SEM and XCT images and scores 4, while Gemini
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FIGURE 12: Problem Task Evaluation: Process Plan

FIGURE 13: Problem Task Evaluation: Build and Monitoring

FIGURE 14: Problem Task Evaluation: Testing

provides explanations. Additionally, unlike Gemini, GPT-4 can
identify defects from high-resolution camera images. GPT-4 and
GPT-3.5 deliver responses to testing-related questions closer to
the reference than Gemini and Llama 2, likely because of the
commonalities GPT 4 and GPT 3.5 share with respect to their
training corpus.

In summary, GenAI presents numerous opportunities to ad-
dress diverse AM tasks. The metrics are chosen based on the four
phases of AM and the corresponding GenAI opportunities. Af-
ter evaluating GenAI tools using these metrics, we conclude that
all existing GenAI models show competence in handling various
domain-related tasks. However, they have limitations in solving
specific problem tasks. Performance variations are likely due to
differences in modality, architecture, training datasets, and the
number of model parameters.

5 CONCLUSION
In this study, we have introduced three categories of metrics

based on four AM exploration spaces: agnostic, domain task,
and problem task metrics, totaling 35 metrics. These metrics are
used to evaluate the capabilities of six popular existing GenAI
tools. The selected GenAI tools include GPT-4, GPT-3.5, Gem-
ini (formerly BARD), Llama 2, DALL·E 3, and Stable Diffusion.
We have also proposed a scoring matrix to assess the responses
of these GenAI tools. By utilizing data from published papers,
we have created inquiries, evaluated responses, and assigned
scores based on the proposed scoring matrix. After comparing
the scores across various metrics, we have found that different
tools have different processing capabilities. We have also no-
ticed that most of these existing models perform well for domain
task metrics; their performance in tackling specific problem tasks
is less consistent. The performance variation may be attributed
to the underlying architecture of the models and their training
dataset. We’ve outlined our future tasks in three parts. Firstly,
the metrics selected under GenAI dimensions in this paper do
not cover all AM-related tasks. In the future, we will broaden
our metric selection to encompass all relevant AM tasks. Sec-
ondly, the current number of questions used to evaluate GenAI
tools is limited. We plan to increase the number of queries to
make our benchmarking more robust. Thirdly, we are working
on developing a customized model specifically designed to solve
complex problem-solving tasks.
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