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ABSTRACT

This paper presents the study on the performance of a vari-
ety of proposed time-domain acoustic features-based frameworks
for the detection of geometrically defective print segments during
the Wire Arc Additive Manufacturing (WAAM) process. Specif-
ically, we investigate into a variety of acoustic features, namely
the Root Mean Square of Pressure (RMSP), Energy, Mean Am-
plitude, Kurtosis, Zero Crossing Rate (ZCR), Skewness, Crest
Factor and Peak-to-peak, and print process parameters, namely
Torch Speed (TS) and Wire Feed Rate (WFR) combined with Ma-
chine Learning (ML) frameworks for detecting geometrically de-
fective print segments. Experiments carried out on Inconel 718
show that among the studied frameworks, using acoustic fea-
tures and process parameters with Random Forest (RF) performs
best in terms of FI1 score at 89%, while using acoustic features
and process parameters with Support Vector Machine (SVM) per-
forms best in picking out defective segments based on the Confu-
sion Matrix. These findings serve as our first step in developing
an intelligent sensing system for the early identification of de-
fective beads in the WAAM printing process, so that appropriate
intervention can be implemented to save printing resources and
material costs. In addition, the proposed approach has the ad-
vantage of detecting defects within a more localized region for
more targeted intervention.
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1 INTRODUCTION

Wire Arc Additive Manufacturing (WAAM) is an arc-
welding-based additive manufacturing technique that uses wire
as a feedstock to build 3D metallic components by depositing
weld beads in a layer-by-layer fashion. Recently, WAAM is
becoming popular in the metal manufacturing industry because
of its low equipment cost, low buy-to-fly ratio, high deposition
rate, and friendly to the environment [1—4]. During the printing
process, assurance of its resulting print quality is a challenging
task because different types of defects, such as lack of fusion,
porosity, cracks, distortion, oxidation, etc., can occur during the
printing process. These reduce the strength of the final printed
product, thus affecting its lifespan and performance. Hence, it is
important to identify the defective printing process early so that
appropriate corrective measures can be taken during the printing
process to save printing resources and material costs. In this pa-
per, we focus on detecting geometric defects because having geo-
metric defects in one layer contribute to voids or porosity within
the part itself, thus affecting its strength and quality. See Fig-
ure 1.

In the literature, numerous techniques have been employed
to sense defects. This included inferring it from acoustic signals,
X-ray radiation, image, thermal measurement, etc. [1]. Among
these, acoustic sensors have several advantages over other mea-
surement techniques due to their low cost, ease of maintenance,
radiation-free, and portability. The acoustic sound generated by
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Voids created by geometric
defects

FIGURE 1: Geometrically defective segments lead to voids be-
tween two successive beads will affect the final printed part
strength and quality.

the electric arc comes from the pulsation of the electric arc and
the vibration of the weld pool metal [5]. Several works explored
the relationships between the geometry of beads and the prop-
erties of acoustic signals [6]. Polajnar et al. [7] showed that ir-
regularities in the bead geometry are reflected in the intensity
of acoustic signals. Pal et al. [8] showed that acoustic signals
could identify metal transfer mode and weld defects. Lv et al. [9]
showed that the height of the arcs constituting the shape of the
bead has a linear relationship with the pressure of the acoustic
signal. Due to the relationships mentioned above between the
properties of the bead geometry and the measured acoustic sig-
nals inspires us to extract and use acoustic features to capture the
geometric defects during the WAAM process with appropriate
feature-based models.

Acoustic features and acoustic feature-based models have
been used in domains ranging from food science to voice recog-
nition and medical diagnostics to solve various domain-specific
classification problems. For example, in the domain of food sci-
ence and technology, Zhao et al. [10] extracted features from
the time-domain acoustic signal and applied Principal Compo-
nent Analysis (PCA) to determine eggshell crack. In the voice
pattern recognition problem, Che Yong et al. [11] used acoustic
features to develop an animal voice identification (ID) detection
system. In the medical domain, Bradley M Whitaker et al. [12]
used time-domain features and Support Vector Machine (SVM)
for the classification of different heart sounds. Encouraged by the
success of acoustic features and acoustic feature-based models in
the above domains, our goal here seek to extend this into the ad-
ditive manufacturing domain through the use of acoustic signal-
based framework for identifying defective segments of beads.

In this paper, we proposed a variety of new defect detec-
tion frameworks and comparatively evaluated its performance
and benchmark with our previous study [13] based on Inconel
718 material. Specifically, we investigate into a variety of acous-

tic features and print process parameters combined with Machine
Learning (ML) frameworks for detecting geometrically defective
print segments. The difference between our previous work and
the present work is threefold. Firstly, in our previous paper,
we explored detection frameworks that use frequency-domain
features only, whereas here, we explored detection frameworks
that use time-domain features. Secondly, in our previous paper,
we identified defective beads as a whole, whereas here, we in-
creased its resolution and identified defective segments of a bead
so that earlier detection and targeted intervention can be possi-
ble. Lastly, in the present paper, we explore the incorporation of
machine process parameters which was not explored previously.

2 EXPERIMENTAL SETUP AND DATA COLLECTION

In this section, we explain our experimental setup, data col-
lection, and dataset labelling approach.

2.1 Experimental Setup

The experiments were conducted on our robotic WAAM sys-
tem at Singapore University of technology and Design (SUTD),
as shown in Figure 2.

——

Shielding Gas

Welding Motor

Wire Feeder

FIGURE 2: Experimental setup of SUTD Robotic WAAM for
Bead Printing and Acoustic Data Collection

The system consists of a robot manipulator (ABB
IRB1660ID), a welding power source (Fronius TPS 400i)
equipped with a welding torch (Fronius WF 25i Robacta Drive),
a cartesian coordinate robot made up of three linear rails (PMI
KM4510) powered by three servos (SmartMotor SM34165DT),
a 2D laser scanner (Micro-Epsilon scanCONTROL 2910-100)
and a microphone (UMIK-1 miniDSP) installed at around 80 cm
above the substrate in order to minimize environmental noise.
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2.2 Data Collection

We printed 23 weld beads from Inconel 718 wires
(BOHLER 3Dprint AM 718) using different combinations of
torch speed and wire feed rate to obtain different weld bead ge-
ometries. The torch speed and wire feed rate were in the range of
1-12 mm/s and 2-8 m/min, respectively. We collected the corre-
sponding acoustic signals at 44 kHz, and then we segmented each
bead signal into ten signal segments. Thus, we get two hundred
thirty signal segments for different torch speeds and wire feed
rates. Since the different combinations of torch speed and wire
feed rate produce different lengths of the acoustic signals, we use
the downsampling [13] approach to make all the acoustic signal
segments of the same length with the same sampling rate. After
this preprocessing, the duration of each acoustic signal segment
is around 0.5 s.

2.3 Dataset Labelling

Our objective is to identify geometrically defective segments
of beads. To train our frameworks to identify defective segments,
we need to assign labels to the signal segments based on which
the ML model can learn to make decisions. Hence we label each
of the signal segments in the Inconel data sets. In our previ-
ous paper, we labeled all the signal segments of a non-defective
bead as “good” and all the signal segments of a defective bead as
“bad” because we consider the whole bead as defective or non-
defective [13]. However, in this paper, we assign different labels
to different signal segments of a bead. In this manner, we have
labelled around 25% signal segments as bad and 75% signal seg-
ments as good.

In order to label signal segments, we first collected point
cloud data of beads using the GOM ATOS III Triple scanner.
Then we divided the whole bead point cloud data into ten seg-
ments of an equal number of points. Then we determine the
range of Gaussian curvature of each of the bead segments. We
categorized all the bead segments into good and bad based on dif-
ferent thresholds of range curvature. The distributions of range
curvature values for good and bad segments were plotted for each
choice of threshold. Finally, we set a threshold for good and bad
segments when the overlapping region of the two distribution
plots is minimum, as shown in Figure 3. In the Figure, the x-
axis represents the values of range curvature of segmented beads,
and the y-axis represents the probability density estimate of each
variable. Therefore, we select 0.3 mm as threshold that can be
used for the detection of defective bead segments. A bead seg-
ment with a range curvature below the threshold is considered a
non-defective segment. The bead segment with a range curvature
higher than the threshold is considered a defective segment.

Examples of geometrically defective and non-defective seg-
ments and their corresponding acoustic waveforms are shown in
Figure 4.

Threshold: 0.3
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FIGURE 3: Threshold selection distribution plot
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FIGURE 4: Geometrically defective and non-defective segments
with acoustic time-domain waveforms.

3 DESCRIPTION OF THE FEATURES AND ML MOD-
ELS
In this section, we explain the various features and ML mod-
els used for the detection of geometrically defective bead seg-
ments. Our proposed workflow is as shown in Figure 5. It be-

Process Parameters

1. Torch Speed (TS)
2. Wire Feed rate (WFR)

Features

) Extraction ML Based Defect
Acoustic Preprocess 1. RMSP Detection
Signal .
g 2. Energy
1. ‘lehavelllelld 3. Mean Amplitude 1. KNN
De;e;is?ng 4. Kurtosis 2' SVM |, Defective /
w 1 2. Scgmentation 5. ZCR 3 RF Non-defective
= 6. Skewness
7. Crest Factor
8. Peak to Peak

FIGURE 5: Our proposed workflow for identification of defective
segments of beads

gins with pre-processing (See Section 2.2), followed by feature
extraction, and then by ML-based defect detection. In the fol-
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lowing, we explain the acoustic features and process parameters
used and the three ML-based models for defect identification.

3.1 Acoustic Features

The eight acoustic signatures used in this study are RMSP,
Energy, Mean Amplitude, Kurtosis, ZCR, Skewness, Crest Fac-
tor, and Peak-to-peak. Their specifics are explained as follows:

3.1.1 BMSP The root mean square pressure (RMSP) is
the root of the mean of the squared pressure of the sound signal
over a time duration. The RMSP is most often used to charac-
terize a sound wave because it is directly related to the energy
carried by the sound wave [14]. The RMSP of a signal in a time
from O to T is given by:

1 /T
P=y|=
T Ji=o

pA(t)dt (1
p(t) is the instantaneous pressure. The RMSP is an important

factor in arc sound. It indicates the metal transfer modes in
WAAM [8].

3.1.2 Energy Energy of sound is a general method of
analyzing the acoustic signal in the time domain. It is used in
different domains such as analyzing the animal population and
recognizing the music instrument [15], and so on. The energy of
sound is expressed using the following equation:

N
E=Y x(n) ©)
i=1

N is the number of samples taken within the time domain signal
x(n). The arc sound transmits energy into a medium through
its vibration. It is commonly used for monitoring the WAAM
process [16]. Too high arc sound energy indicates the possibility
of defects [17].

3.1.3 Mean Amplitude The amplitude of a sound sig-
nal is a statistical feature of sound that determines the loudness
of the sound. A larger amplitude means a louder sound, and a
smaller amplitude means a softer sound. The mean amplitude of
a signal be expressed as

1N

el 3)

i=1

A=

A perfect weld usually has a uniform amplitude in its sound sig-
nals. Sound peaks with larger than normal amplitudes may point

to possible defects in the weld. The welding process is said to
be good if sound signals have similar amplitudes within the time
intervals. [18].

3.1.4 Kurtosis Kurtosis is used to analyze the vibra-
tory amplitudes’ distribution in a time-domain signal. Kurtosis
is expressed by the following equation:

yo NI b0 @

ot

It indicates the degree of sharpness, metal transfer mode, peak
status, and steep level of arc sound signal [19, 20]. From the
literature [8, 20], it is concluded that the arc sound kurtosis is a
good indicator of the weld defect; however, the accuracy of the
defect detection with sound kurtosis was not studied.

3.1.5 ZCR ZCR (Zero Crossing Rate) is the number of
times the sound signal changes its sign. ZCR helps to esti-
mate the fundamental frequency of speech for speech process-
ing applications [15]. It is also helpful for discriminating speech
from noise and for determining the start and end of speech seg-
ments [21]. ZCR can be expressed as:

f N
ZCR = NZ | sgn(x(n)) —sgn(x(n—1)) | Q)
i=1

where

41 ifx(n>=0)
[sgnlx(m) |= {_1 ) ©®)

f is the sampling rate of signal. ZCR detects the variation of arc
sound from its ideal arc behavior during welding [22].

3.1.6 Skewness The skewness factor is also an impor-
tant factor in the processing of signals. It is expressed as

- N x,‘—X3
%—N;( ) )

It is used to distinguish different transfer modes [23] and differ-
ent penetration states of the welding pool [24].
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3.1.7 Crest Factor Crest factor (CF) is a statistical pa-
rameter of sound signal that corresponds to the ratio of maximum
value and RMS value of a signal.

max | x; |
1 yvN
V N Lic1 %]

It is used to monitor the impulses in time domain vibration due to
the defect in the welding zone. In addition, it is used to compare
the welding process for defect-free and defective welds [20].

CF = ®)

3.1.8 Peak-to-Peak Peak-to-peak (pk-pk) is the differ-
ence between the maximum and the minimum amplitudes of a
sound signal. It is a characteristic property of sound that is gen-
erally used for statistical analysis of sound label [25]. It can be
expressed as:

y = max(x) — min(x) )

The consistency of the peak-to-peak distance of arc sound indi-
cates a good welding process along the entire welding path. In
other words, sound peaks of stable welding should demonstrate
a fairly constant pattern.

3.2 Process Parameters

In WAAM processes, several key input factors should be as-
signed before printing in order to get different geometry beads.
These parameters such as torch speed, wire feed speed, work-
ing distance, arc voltage, deposition strategy or path planning,
etc. [26] are called process parameters [13]. Earlier studies have
looked at the effects of process parameters such as wire feed rate
(WFR) and torch speed (TS) on welding quality, weld-bead ge-
ometry [27,28] and welding defects. It was found that TS and
WEFR had a major influence on deposition width and height and
a stable deposited layer. As TS increased, the deposited layer
became worse, and defects started to occur due to lower input
heat [29]. Again, surface roughness can be predicted by using
process parameters [30]. In general, increasing WFR increases
surface roughness. A lower WFR with lower TS decreases the
surface roughness [31].

The effect of process parameters on the welding geometry
and defects influenced us to use the process parameters as auxil-
iary features to improve the performance of ML frameworks for
defect detection.

3.3 ML Model for Defect Identification
In this section, we explain three ML-based models explored
for defect identification: KNN, SVM, and RF.

K-Nearest Neighbors (KNN) KNN is a supervised learning
technique. The algorithm selects K nearest points of a new sam-
ple by calculating the distance among all existing samples with
the new sample. The K nearest neighbors are determined by the
shortest distance from the new sample. The class of a new sam-
ple is assigned to the majority class of K nearest points [32]. For
this application, we find K = 3 (3 nearest neighbors) is ideal for
our frameworks (see Section 4.1).

Support Vector Machine (SYM) SVM is a discriminative
classifier that creates a line or a hyper-plane to separate data
points into different classes. In the present work, a non-linear
SVM was trained to classify the bead segments into good and
bad based on their input features and corresponding labels. The
goal of SVM is to search a function f(x) with parameters ¢; and
b [33] which can predict defective segments of beads. A general
format of SVM is shown as

f(x) = iy,-oc,»k(xl-,x) +b
i=1

Here, we use RBF (radial basis function) kernel k(x;,x) =
exp(—7||x —x;||?). For our application, we find y = 0.1 ideal
for training our frameworks (see Section 4.1).

Random Forest (RF) RF is a supervised ML technique that
consists of many decision trees as its building blocks. RF is suit-
able for modeling non-linear and complex systems [29]. It is
generally not affected by outliers and noise and involves a faster
training process. RF learns to build the relationships between
the inputs and outputs in the training stage. Once the training is
done, a new example is presented for testing. Each tree in the
trained RF then votes for classification [34]. The class with the
most votes is used as the predicted class. In our application, we
use RF to detect defects in a bead. We find number of tress=100
is suitable for our application (see Section 4.1).

4 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we report and evaluate the training mecha-
nisms (Section 4.1), performance (Section 4.2 and Section 4.3)
of our proposed framework based on two types of features. One
is based on “Acoustic only”, where we consider features of
acoustic signatures only. The second consists of the fusion of
both “Acoustic and process parameters”, where we consider both
acoustic signatures and process parameters as features. Subse-
quently, we evaluate three ML models, described above, on their
performance to identify defective segments based on these two
types of features.
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4.1 Training Mechanism

In the following, we discuss the choice of hyperparameters
for the purpose of demonstrating the reproducibility of our work
for other empirical studies.

Hyperparameters for KNN In order to find the optimal K
value required to train the KNN, we obtained the resulting classi-
fication error over a range of K. For each feature type (Acoustic
only or Acoustic with process parameters combined), we per-
formed five-fold cross-validation (CV). Then, we calculated the
classification error on the training data for each fold as K varies
from K = 1,...,50. Finally, we computed the average error
across the CV folds with respect to different K values and se-
lected the K value corresponding to the lowest classification er-
ror on the training data as the optimal K value. The classification
error results for the acoustic only, and acoustic and process pa-
rameters combined for each K value, are as shown in the left and
right of Figure 6 respectively. Notice that from these five-fold

Acoustic only + KNN Acoustic and Process Parameters + KNN
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FIGURE 6: KNN classification error for each K value for acous-

tic features only (left plot) and acoustic and process parameters
features combined (right plot)

CV experiments, we find that the lowest mean training classi-
fication error is around 0.1 for both acoustic features only, and
acoustic features and process parameters combined, which occur
at K = 3. Therefore, we chose K = 3 for the training of both of
these feature types.

Hyperparameters for SVM  Similarly, in order to find a suit-
able SVM parameter ¥, we studied the resulting classification
error over a range of y. Same as before, we performed five-fold
CV for each feature type (Acoustic only or Acoustic with process
parameters combined). Then we calculated the training classifi-
cation error as ¥ varies from y = 0.01...0.5. Finally, we obtained
the mean training classification error across five folds for each
value of 7, and selected the 7y that corresponds to the lowest clas-
sification error as the optimal ¥ for training. The results of the
classification error are as shown in Figure 7. We find that the low-
est mean training classification error is around 0.15 and 0.1 for
acoustic features only, and acoustic features and process param-
eters combined respectively at y = 0.1. Hence we chose y = 0.1
for the training of both of these features.

Acoustic only+ SVM
028 Y Acoustic and Process Parameters+ SVM

Classification Error
ti
°

Cl

0.0 0.1 0.2 03 04 05 0.0 0.1 0.2 03 04 0.5
y Value y Value

FIGURE 7: SVM classification error for each ¥y value for acous-
tic features only (left plot) and acoustic and process parameters
features combined (right plot)

Hyperparameters for RF To find the best number of trees for
the RF model, we performed similar five-fold CV experiments as
for KNN and SVM models. The number of trees was varied from
1 to 250 to obtain the optimal number of trees based on the lowest
training classification error. Figure 8 shows the resulting classi-
fication error plot for both feature types. For RF, we find that

Acoustic only+ RF Acoustic and Process Parameters + RF

E=1
1 0.0775

Classification Error
°

0.09

0 50 100 150 200 250

Number of Trees 0 50 100 150 200 250
Number of Trees

FIGURE 8: RF classification error for each number of trees for
acoustic features only (left plot) and acoustic and process param-
eters features combined (right plot)

the lowest mean training classification error is around 0.07 and
0.08 for acoustic features only, and acoustic features and process
parameters combined respectively at the number of trees=100.
Hence, we chose the number of trees as 100 for training of both
these feature types.

4.2 Performance Evaluation Based on F1 Score

In this section, we evaluate the performance of the proposed
geometric defect detection frameworks based on the F1 score,
which is computed from its precision and recall. The reasons to
measure these metrics are two-fold. First, it serves as a quality
assessment for a framework with an imbalanced dataset. Second,
it allows us to check the performance of a particular geometric
defect detection framework.

Acoustic only + KNN For training this framework, we add
all time-domain features together and use five-fold cross valida-
tion [35] to train KNN (K=3) model to detect defective segments.
Therefore, for training each fold, 184 signal segments are used
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for training and 46 signal segments are used for testing. After
completing the full training procedure, we get mean F1 score of
around 80% based on testing dataset.

Acoustic only + SVM  Similarly, we add all time-domain fea-
tures together and use SVM (y = 0.1) to detect defective seg-
ments. We also use five-fold cross validation for training this
framework. After training, we get mean testing F1 score of
around 83%.

Acoustic only + RF Same as before, for training this frame-
work, we add all time-domain features together and use an RF-
based identifier (number of tress=100) to detect defective seg-
ments. We use five-fold cross validation for training this frame-
work. After training, we get mean testing F1 score of around
84%.

Acoustic and process parameters + KNN For training of this
framework, we add all time-domain features and two process pa-
rameters together and use KNN (K = 3) identifier to defect de-
fective segments. After training, We get mean testing F1 score
of around 85%.

Acoustic and process parameters + SVM  Similarly, we add
all time-domain features and process parameters together and use
five-fold cross validation for training SVM. After training, we get
mean testing F1 score of around 87%.

Acoustic and process parameters + RF Same as before, af-
ter adding all time-domain features and two process parameters
together, we use RF identifier to defect defective segments using
five-fold cross validation. After training, we get mean testing F1
score of around 89%.

Summary Table 1 shows the summary of our comparative
study of the various frameworks combinations. It also shows
the comparison with our previously studied best performing
frequency domain-based geometric defect detection framework
PCA+KNN [13] based on the printing of Inconel material. From
the table, it can be seen that all of our existing studied frame-
works outperform our previous results [13]. Moreover, we found
that the best performing framework based on the F1 score is
acoustic features with process parameters trained using RF. This
achieves around 89% mean F1 score, about 9% more than our
previously studied PCA+KNN framework.

4.3 Performance Evaluation based on Confusion Ma-
trix
From section 4.2, we concluded from the F1 scores that our
acoustic and process parameters + RF framework is able to pick
out good and bad bead segments more effectively than the other

TABLE 1: COMPARATIVE STUDY OF ALL FRAMEWORKS
BASED ON TEST DATASET

Framework F1- Score Precision Recall
Acoustic
80.544+0.06 | 80.76+0.09 | 80.24+0.05
only +KNN
Acoustic
83.504+0.05 | 84.794+0.07 | 82.004+0.06
only +SVM
Acoustic
84.274+0.03 | 85.58+0.06 | 84.01 +0.07
only +RF
PCA+KNN 80.094+0.07 | 86.58+0.06 | 77.74 +0.07

Acoustic and

process parameters | 85.48£0.03 | 85.64+0.06 | 85.2040.02
+KNN

Acoustic and

process parameters | 87.50+£0.04 | 86.90+0.08 | 88.0140.07
+SVM

Acoustic and

process parameters | 89.11+£0.08 | 91.11+0.01 | 88.964+0.10
+RF

studied frameworks. However, as our ultimate goal is to iden-
tify defective segments of beads, we seek to understand which
of these studied frameworks can detect bad segments more accu-
rately in this section.

In order to find which frameworks can accurately classify
more bad segments, we utilized confusion matrix [36] as they
give information about the predicted and true classification of
the good and bad segments. To calculate the confusion matrix,
we use five-fold cross-validation approach for each of the frame-
works studied, as shown in Table 2. First, we observe that our
studied frameworks can effectively pick out good and bad seg-
ments compared with our previously explored PCA+KNN ap-
proach [13]. We also observed that having both acoustic features
and process parameters based framework is able to pick out more
bad segments than the acoustic-only framework. Next, we notice
that the acoustic features and process parameters with SVM can
pick out 43 bad segments of a list of 51 bad segments. In con-
trast, our previously identified best framework PCA+KNN can
pick out only 30 bad segments. Interesting, the best performing
framework based on the F1 score (acoustic and process parame-
ters with RF) is not the best framework for identifying bad seg-
ments based on its confusion matrix. Because the higher F1 score
in acoustic features and process parameters with RF is dominated
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by the number of good segments. Therefore, if the objective is to
pick out more bad segments accurately, using acoustic and pro-
cess parameters with SVM is more accurate.

We also analyzed the importance of features based on the
mean decrease in impurity. We used the RF model to generate
feature importance scores for the acoustic features-based model
and acoustic features and process parameters-based model in or-
der to identify which features are most important for predicting
the defective segments.

Feature importances of Acoustic and Process Parameters+RF

Feature importances of Acoustic only+RF
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FIGURE 9: Impurity based importance calculation for acoustic
features only (left plot) and acoustic and process parameters fea-
tures combined (right plot) using RF model

From Figure 9, we observe that energy, RMSP, mean ampli-
tude, and peak-to-peak features contribute a lot to detect bad seg-
ments for the acoustic features only based RF model. Therefore,
these features are important for prediction. Again, the acoustic
and process parameters features combined plot shows that the
torch speed feature significantly influences prediction. More-
over, energy, RMSP, mean amplitude, and peak-to-peak features
also have significant contributions in this case.

5 CONCLUSION

In this paper, we have explored the use of a variety of time-
domain arc sound signatures, namely the Root Mean Square
of Pressure (RMSP), Energy, Mean Amplitude, Kurtosis, Zero
Crossing Rate (ZCR), Skewness, Crest Factor and Peak-to-peak,
and as well as print process parameters, namely the Torch Speed
(TS) and Wire Feed Rate (WFR) as features for ML models
for the detection of defective print segments during the WAAM
process. We have demonstrated the effectiveness of the use of
these features based on three ML models: i) K-Nearest Neigh-
bors (KNN); ii) Support Vector Machine (SVM); and iii) Ran-
dom Forest (RF) for the identification of geometrically defective
print segments on Inconel 718. We showed that the performance
of the defect detection framework generally increases when we
combine both the sound signatures and process parameters, and
when these features used in conjunction with SVM, they are the
most effective framework in picking out bad segments.

TABLE 2: COMPARATIVE STUDY OF CONFUSION MATRI-
CES OF ALL FRAMEWORKS BASED ON TEST DATASET

Frameworks True
Good | Bad
Acoustic Only
Predicted | Good 164 16
+ KNN
Bad 15 35
Acoustic Only
Predicted | Good 161 9
+ SVM
Bad 18 42
Acoustic Only
Predicted | Good 166 12
+ RF
Bad 13 39
PCA+KNN Predicted | Good 173 21

Bad 6 30

Acoustic and

process parameters | Predicted | Good | 168 12

+KNN

Bad 11 39

Acoustic and

process parameters | Predicted | Good | 166 8

+SVM

Bad 13 43

Acoustic and

process parameters | Predicted | Good | 173 10

+RF

Bad 6 41

For future work, we seek to improve the performance of our
proposed frameworks by adding more acoustic features and pro-
cess parameters together. Also, we plan to characterize differ-
ent print process parameters and explore their relationships with
acoustic signals to enhance defect identification on our WAAM
system further. Since our data set is not large enough to study the
deep learning method that can directly extract the features. In the
future, we plan to use other modalities and image-based data to
explore deep learning methods.
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