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ABSTRACT

In Wire Arc Additive Manufacturing (WAAM), weld beads
are deposited bead-by-bead and layer-by-layer, leading to the fi-
nal part. Thus, the lack of uniformity or geometrically defective
bead will subsequently lead to voids in the printed part, which
will have a great impact on the overall part quality and me-
chanical strength. To resolve this, several techniques have been
proposed to identity such defects using vision or thermal-based
sensing, so as to aid in the implementation of in-situ corrective
measures to save time and cost. However, due to the environ-
ment that they are operating in, these sensors are not an effective
way of picking up irregularities as compared to acoustic sens-
ing. Therefore, in this paper, we seek to study into three acoustic
feature-based machine learning frameworks - Principal Compo-
nent Analysis (PCA) + K-Nearest Neighbors (KNN), Mel Fre-
quency Cepstral Coefficients (MFCC) + Neural Network (NN)
and Mel Frequency Cepstral Coefficients (MFCC) + Convolu-
tional Neural Network (CNN) and evaluate their performance
for the real-time identification of geometrically defective weld
bead. Experiments are carried out on stainless steel (ER316LSi),
bronze (ERCuNiAl) and mixed dataset containing both stainless
steel and bronze. The results show that all three frameworks out-
perform the state-of-the-art acoustic signal based ANN approach
in terms of accuracy. The best performing framework PCA+KNN
outperforms ANN by more than 15%, 30% and 30% for stainless
steel, bronze and mixed datasets, respectively.

1 INTRODUCTION

Wire Arc Additive Manufacturing (WAAM) is an arc-
welding-based Direct Energy Deposition additive manufacturing
technique. Recently, WAAM is becoming popular in the metal
manufacturing industry because of its low equipment cost, low
buy-to-fly ratio and high deposition rate [1, 2]. A WAAM prod-
uct consists of multiple layers of overlapping weld beads. Dur-
ing the printing process, defects such as porosity, cracks, dis-
tortion, oxidation etc., may occur in the weld beads because of
poor programming strategy, excessive heat accumulation, viola-
tion of the welding process, environmental influence and other
machine malfunctions [3, 4]. Hence, it is important to identify
the defective welding process early on so as to ensure the quality
and consistency of the final printed WAAM product. In this pa-
per, we focus on detecting defects in terms of the non-uniformity
of the geometric shape of the weld beads, hereby referred to as
geometric defects [5]. This is because irregular weld beads af-
fect the strength [6] and quality [7] of the WAAM product as
they contribute to voids or porosity within the part itself (See
Figure 1). Therefore, real-time identification of geometrically
defective beads during the printing process is essential so that ap-
propriate corrective measures can be taken during the print pro-
cess to save welding resources and material costs.

In the literature, Jia et al. [8], and Zhang et al. [9] used
visual-based sensors to identify geometric defects in real-time
through the use of support vector machine (SVM) and convolu-
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FIGURE 1: Geometrically defective beads lead to voids between
two successive beads will affect the final printed part quality and
strength.

tional neural network (CNN), respectively. Kryukov et al. [10]
used a thermal camera to identify surface defects by studying the
intensity profile during the friction weld process. However, the
downside of the use of such sensors for our purpose is that they
are light-sensitive, dust-sensitive, expensive and require high
maintenance. On the other hand, acoustic sensors have several
advantages over these sensors due to their low cost, easy to main-
tain, simple structure, highly targeted sensitive [11] and radiation
free [1, 5]. Hence, this motivates us to explore acoustic-signal-
based frameworks to identify geometrically defective beads.

There are several works that explored the relationships be-
tween the geometry of beads and the properties of acoustic sig-
nals [12]. Polajnar et al. [5] showed that irregularities in the bead
geometry are reflected in the intensity of acoustic signals. Lv
et al. [13] showed that the height of the arcs constituting the
shape of the bead has a linear relationship with the pressure of the
acoustic signal. Due to above-mentioned relationships between
the properties of the bead geometry and the measured acoustic
signals, this inspires us to extract and use acoustic features to
capture the geometric defects during the WAAM process with
appropriate feature-based models.

Acoustic features and acoustic feature-based models have
been used in domains ranging from food science to voice recog-
nition, and to medical diagnostic for solving various domain-
specific classification problems. In the domain of food sci-
ence and technology, Zhao et al. [14] extracted features from
the time-domain acoustic signal and applied Principal Compo-
nent Analysis (PCA) to determine eggshell crack. Another ap-
proach is through the use of Mel-Frequency Cepstral Coeffi-
cients (MFCCs) to extract features [15], and combined with
Neural Network (NN) [16] and Convolutional Neural Network
(CNN) [17] for classification. Such approaches are commonly
applied in voice recognition problem. In the medical domain,
Zabidi et al. [18] used MFCC features and CNN for detecting

infant asphyxia disease based on their crying sound. Encour-
aged by the success of acoustic features and acoustic feature-
based models in the above domains, our goal here seek to extend
this into the additive manufacturing domain through the use of
acoustic signal based framework for identifying defective beads.
In the domain of additive manufacturing, there is an acoustic
signal based methodology that uses Artificial Neural Network
(ANN) [19] to identify defective beads. ANN uses time domain
acoustic signals as features to train a neural network.

In this paper, we propose and evaluate three different acous-
tic signal based frameworks for geometrically defective bead
identification: PCA + KNN, MFCC + NN and MFCC + CNN.
PCA + KNN (Section 3.2) uses Principal Component Analysis
(PCA) for feature extraction and K-Nearest Neighbors (KNN)
for identifying the detective beads. MFCC + NN (Section 3.3)
uses Mel Frequency Cepstral Coefficients (MFCCs) as features
and trains a Neural Network (NN) using those features for iden-
tification of the defective beads. MFCC + CNN (Section 3.4)
converts the MFCCs features into images and trains Convolu-
tional Neural Network (CNN) using those images for identifi-
cation of the defective beads. To understand the suitability of
these frameworks for our purpose across different materials, we
empirically evaluate these frameworks on two types of printed
materials, namely, bronze and stainless steel (Section 2 and Sec-
tion 4).

We comparatively evaluate our frameworks with the exist-
ing ANN framework [19]. Our frameworks, particularly the
MFCC+NN and MFCC+CNN, differ from ANN in that our
frameworks use spectral features (MFCCs), whereas ANN uses
time-domain signals. Our frameworks are architecturally differ-
ent from ANN and furthermore optimised for performance (see
Section 3.3 and Section 3.4 for details). The empirical evalu-
ation suggests that the best-performing framework PCA+KNN
outperforms the existing ANN by more than 15%, 30% and 30%
for stainless steel, bronze and mixed datasets respectively (Sec-
tion 4.2).

2 EXPERIMENTAL SETUP AND DATA COLLECTION
In this section, we explain our experimental setup, data col-

lection and dataset labelling.

Experimental setup The experiments were conducted on our
robotic WAAM system at Singapore University of technology
and Design (SUTD) as shown in Figure 2. The system consists of
a robot manipulator (ABB IRB1660ID), a welding power source
(Fronius TPS 400i) equipped with a welding torch (Fronius WF
25i Robacta Drive), a cartesian coordinate robot made up of three
linear rails (PMI KM4510) powered by three servos (SmartMo-
tor SM34165DT), a 2D laser scanner (Micro-Epsilon scanCON-
TROL 2910-100) and a microphone (Hoco M19 DRUMBEAT)
that is connected around 60 cm above the substrate in order to
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FIGURE 2: Experimental setup of SUTD robotic WAAM for
Data Collection

minimize environmental noise. The gantry system is controlled
to move the laser scanner in 3D space in order to obtain 3D point
clouds of the printed weld beads.

Data collection We printed 26 weld beads using bronze
(ERCuNiAl) wires and 52 weld beads using stainless steel
(ER316LSi) wires on different combination of torch speed and
wire feed rate in order to obtain different acoustic signals and
weld bead geometry. The torch speed and wire feed rate were in
the range of [3,10] mm/s and [3,8] m/min respectively for bronze
as well as [3,15] mm/s and [3,6] m/min respectively for stainless
steel.

We collected 26 bronze signals and 52 stainless steel sig-
nals. The signals were collected at 8KHz sampling rate during
the welding process and stored in our computer. We segmented
each of the collected signals into ten signal segments. Thus, the
bronze dataset contains 260 bronze signal segments and stainless
steel dataset contains 520 stainless steel signal segments.

Dataset labelling Our objective is to identify geometrically de-
fective beads. In order to train an acoustic signal based model to
identify a defective bead, we need to assign labels to the signal
segments based on which the model would learn to make deci-
sions. Hence we label each of the signal segments in the bronze
and stainless steel datasets.

In order to label signal segments, we first determine the uni-
formity of the beads. To do so, we measured the height, width
and area of each bead using a moving 2D laser scanner. Then
we calculated the Root Mean Square Error (RMSE) value of the
height, width and area of each bead. Finally, we calculated a
combined RMSE by

RMSE = (
widthRMSE +heightRMSE +

√
areaRMSE

3
) (1)

A bead with a smaller combined RMSE is more uniform;

a b

FIGURE 3: Geometrically defective and non-defective beads
with acoustic time-domain waveforms (a) Bronze with de-
fects (RMSE = 0.62mm) (b) Bronze without defects (RMSE =
0.44mm)

a b

FIGURE 4: Geometrically defective and non-defective beads
with acoustic time-domain waveforms (a) Stainless steel with
defects (RMSE = 0.409mm) (b) Stainless steel without defects
(RMSE = 0.27mm)

we consider it a good (non-defective) bead. Similarly, A bead
with a larger combined RMSE is less uniform; we consider it a
bad (defective) bead. We find that the threshold for a Stainless
steel defective bead is 0.377mm and a Bronze defective bead is
0.5mm. Examples of geometrically defective and non-defective
beads and their corresponding acoustic waveforms are shown in
Figure 3 and Figure 4.

All the signal segments of a good bead are labelled good,
and all the signal segments of a bad bead are labelled bad. In this
manner, we have labelled around 40% bronze signal segments
as bad and 60 % bronze signal segments as good, while 20%
stainless steel signal segments as bad and 80 % stainless steel
signal segments as good beads. In the mixed dataset, around
25% signal segments are labelled bad, and 75 % signal segments
are labelled good.

3 DESCRIPTION OF THE ACOUSTIC SIGNAL BASED
FRAMEWORKS

In this section, we explain our proposed frameworks for
feature extraction and identification of geometrically defective
beads are as shown in Figure 5. It begins with Downsampling,
followed by Feature Extraction and then by Identification.
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FIGURE 5: Our proposed frameworks for identification of defec-
tive beads

3.1 Downsampling
As we use different torch speed and wire feed rate for print-

ing the similar length beads, the number of acoustic signal data
points of each bead is different. Therefore, we use downsam-
pling approach to make the same number of data points for all
acoustic signals so that the same number of data points for each
set can be subsequently used for feature extraction. Let us con-
sider, zi as the acoustic signal of the ith bead, T i as the number
of data points in zi, and Tmin as the number of data points in
the smallest signal. If there is a positive integer k that satisfies
k ∗ Tmin ≤ T i < (k + 1) ∗ Tmin, then the downsampled signal as
denoted by xi is given by the following sequence

xi = (zi(1),zi(1+ k),zi(1+2k),zi(1+3k), . . .) (2)

For example, if Tmin ≤ T i < 2Tmin, we downsample by select-
ing the first Tmin data points from zi. If 2Tmin ≤ T i < 3Tmin, we
downsample by selecting 1st , 3rd , 5th data points, and so on from
zi.

3.2 PCA+KNN
In this section, we explain the feature extraction and identi-

fication procedure for PCA+KNN framework.

Feature Extraction (PCA) PCA is a dimension reduction
technique which reduces the dimensions of the data while keep-
ing most of the information of the original data. PCA uses singu-
lar value decomposition and projects the high dimensional data
into a lower dimension space [20]. Our PCA feature extraction
procedure is given below:

1. Compute Discrete Fourier Transform (DFT) [21] on the
downsampled signal using the following equation:

X(k) =
N−1

∑
n=0

x(n)e− j2πnk/N , 0≤ k ≤ (N−1) (3)

where N is the number of points used to compute the DFT.

2. Use wavelet threshold denoising [22] to denoise the DFT
signal to get y(k), and assemble them into a matrix. [Y ] =
{y(0),y(2), . . . ,y(N−1)}.

3. Calculate the covariance matrix [Q] = [Y ][Y ]T .
4. Calculate the eigenvectors and eigenvalues of the covariance

matrix using the following equation: λiei = [Q]ei where λi
is the eigenvalue associated with the eigenvector ei.

5. Sort the eigenvectors in the descending order of eigenval-
ues. The eigenvectors with the highest, the second-highest
eigenvalues form the 1st , 2nd principal components and so
on.

Identification (KNN) KNN is a supervised learning technique.
The algorithm works by selecting the Kth nearest points of a new
example by calculating the distance among all existing examples
with the new example. The Kth neighbors are determined by the
shortest distance from the new example. The class of new exam-
ple is assigned to the majority class of Kth nearest points [23].
For this application, we find that K = 3 (3 nearest neighbors) is
ideal as it gives minimum validation loss and with the first six
principal components is sufficient for training the KNN to yield
maximum validation accuracy.

3.3 MFCC+NN
In this section, we explain the feature extraction and identi-

fication procedure for MFCC+NN framework.

Feature Extraction (MFCC) MFCCs is a popular acoustic
feature extraction technique and is used for speech recogni-
tion [24] and emotion recognition [25]. Mel frequency here
refers to human audible range frequency. MFCCs are short term
power spectrum based features [26] which capture the distin-
guishing characteristics of sound. Our MFCCs feature extrac-
tion procedure [21] from downsampled acoustic signal is given
below:

1. Convert each segmented signal into frames.
2. On each frame, apply a window function (e.g. Hamming

window) to get a windowed signal.
3. Compute Discrete Fourier Transform (DFT) on the win-

dowed signal using Eq. (3).
4. Compute Mel-filter bank, which is a set of band-pass filters.

The filter-bank is a nonlinear-scale filter bank that imitates
a human’s audible system. Most of the filter shape is tri-
angular. The filter-banks are implemented in the frequency
domain for MFCCs computation. The conversion of physi-
cal frequency to Mel frequency is given below:

fMel = 2595log10(1+ f/700) (4)

where f is the physical frequency in Hz and fMel is the hu-
man perceived frequency.
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5. Calculate filter-bank energies by multiplying the square of
the magnitude spectrum of DFT signal with each filter-bank:

s(m) =
N−1

∑
k=0

[X(k)]2Hm(k), 0≤ m≤M−1 (5)

where M is the total number of triangular Mel filters and
Hm(k) is the weight given to the kth energy spectrum bin
contributing to the mth output band.

6. Calculate the logarithm of the energies.
7. Apply Discrete Cosine Transform (DCT) to the log filter

bank energies and produce the cepstral coefficients for each
frame. Traditionally, 8 to 13 coefficients are selected. The
equation of getting coefficients is given below:

c(n) =
M−1

∑
m=0

log10(s(m))cos(πn(m−0.5)/M) (6)

where n = 0,1,2, ...,C−1, c(n) are the cepstral coefficients
and C is the number of MFCCs. The coefficients of each
frame form a row vector.

8. Construct a matrix (MFCCs feature matrix) for each seg-
mented signal using the row vectors of the frames.

Identification (NN) The architecture of our proposed NN con-
sists of one input layer, three hidden layers and one output layer,
as shown in Figure 6. Inputs to the NN are the MFCCs fea-

512 neurons
𝑳𝟐

regularizer
ReLU

256 neurons
𝑳𝟐

regularizer
ReLU

64 neurons
𝑳𝟐

regularizer
ReLU

Output layer
2 neurons

So�max
Input layer

FIGURE 6: Our NN Architecture for defective bead Identifica-
tion

ture matrices of all segmented signals. The hidden layers con-
tain 512, 256 and 64 neurons, respectively. Rectified Linear Unit
(ReLU) activation function [27] is used in all hidden layers. L2
regularization (0.001) [28] is used in every hidden layer to avoid
overfitting problem.

The reason behind using such an architecture is that, it is op-
timised for performance. To be specific, we vary the number of
hidden layers and select such a number of hidden layers that pro-
vides the highest testing accuracy on mixed dataset. As shown in
Figure 7 (a), a 3-layer NN provides the maximum classification
accuracy.
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(b) CNN filter choice

FIGURE 7: NN and CNN architecture choice

3.4 MFCC+CNN
In this section, we explain the feature extraction and identi-

fication procedure for MFCC+CNN framework.

Feature Extraction (MFCC) First, we follow the same proce-
dure explained in Section 3.3 for extracting feature matrix of a
segmented signal. Finally, we convert each MFCCs feature ma-
trix of a segmented signal into an image. We refer this image as
MFCCs feature image. An example of MFCCs feature image is
shown in Figure 8.
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FIGURE 8: MFCCs feature image of a segmented signal

Identification (CNN) The architecture of our proposed CNN
for defective bead identification is made up of one convolutional
layer, one pooling layers, one fully connected layer, and one out-
put layer as shown in Figure 9. Inputs to the CNN are the MFCCs

Conv. 1
3×3

@ 32
ReLU

Max pool 1
3×3

ReLU

Input 
images

FC
64 neurons

ReLU

Output 
layer

2 neurons
So�max

FIGURE 9: Our CNN Architecture for defective bead Identifica-
tion

feature images of all segmented signals. The convolutional layer
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consists of 32 filters, and the size of each filter is 3× 3. Also,
the max-pooling layer filter size is 3× 3. The Fully Connected
(FC) layer contains 64 neurons to connect all the activation of
previous layers. One dropout (0.3) is added after the FC layer to
avoid overfitting.

The choice of 32 filters in the convolutional layer is in order
to achieve a better classification accuracy. To be specific, we
vary the number of filters in the convolutional layer from 1 up
to 50 and using 10-fold cross validation approach we select such
a number of filters that provides the highest testing accuracy on
mixed dataset. As shown in Figure 7 (b), we observe that testing
accuracy is quite similar after around 32 filters. Therefore, we
select 32 filters in the convolutional layer.

4 EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we report and evaluate the training mech-

anism (Section 4.1), performance (Section 4.2) and robustness
(Section 4.3) of the proposed frameworks.

4.1 Training Mechanism
In this section, we report the training procedures of the

frameworks and discuss choices of parameters (if any) for the
purpose of demonstrating soundness and reproducibility of the
models used later for other empirical studies.

TABLE 1: NUMBER OF TRAINING, VALIDATION AND
TESTING SAMPLES OF DIFFERENT DATASETS

Dataset Training Validation Testing

Bronze 156 39 65

Stainless Steel 312 78 130

Mixed 468 117 195

PCA+KNN We extract the 1st 25 principal components from
bronze and stainless steel datasets. In order to validate the mini-
mum number of principal components required to train the KNN,
we split the mixed dataset randomly as 60% for training, 25%
for testing and 15% for validation as shown in Table 1. Then we
calculate the validation accuracy for different components. We
follow the similar process 30 times and get mean validation accu-
racy for different components and, plot in Figure 10. We observe
that the mean validation accuracy increases at the beginning and
reach around 97 % for the first six components and then the ac-
curacy become stable. Therefore, training the first six principal
components is enough to get maximum validation accuracy.

Thus utilizing the first six principal components and after
training our KNN 30 times randomly, we get training and valida-
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FIGURE 10: Accuracy vs number of principal components

tion accuracy at around 98% and 97% respectively for the mixed
dataset. When we split the mixed dataset into their respective
materials, we get training and validation accuracy at around 96%
and 91% for the bronze dataset, and 99% and 99% for stainless
steel dataset respectively.
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FIGURE 11: Learning curves of MFCC + NN on different
datasets

MFCC + NN After extracting the MFCCs feature matrices, we
use the features for training the NN. We split the mixed dataset as
60% for training, 25% for testing and 15% for validation. Adam
optimizer [29] with sparse categorical cross-entropy loss is used
for training the NN and the value of 0.0001 is used as the learning
rate. We run 50 iterations for each training and validation. We
also train the network 30 times to check for its stability. Thus
using this framework, we get training and validation accuracy at
around 99% and 95% respectively for the mixed dataset. Sim-
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ilarly, we get training and validation accuracy at around 99 %
and 89% for the bronze dataset as well as 99 % and 96 % for the
stainless steel dataset respectively.

The learning curves of MFCC+NN on the bronze dataset,
stainless steel dataset and mixed dataset are shown in Figure 11.
In the curves, we observe that both training and validation loss
decrease as we increase the number of epochs. After 50 epochs,
both training and validation loss become stable with a minimum
gap. Therefore, we conclude that the MFCC+NN framework has
been trained without over-fitting.
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FIGURE 12: Learning curves of MFCC+CNN on different
datasets

MFCC + CNN Similarly, we use the MFCCs feature images
for training the CNN. We split the mixed dataset as 60% for train-
ing, 25% for testing and 15% for validation. We use Adam opti-
mizer [29] with sparse categorical cross-entropy loss for training
the CNN and 0.0001 as the value of the learning rate. We run 30
iterations for each training and validation. We train the network
30 times to check its stability. After training, we get training and
validation accuracy at around 97% and 94% respectively for the
mixed dataset. Again, we get training and validation accuracy at
around 96 % and 88% for the bronze dataset as well as 99 % and
97 % for stainless steel dataset separately.

The learning curves of MFCC+CNN on the bronze dataset,
stainless steel dataset and mixed dataset are shown in Figure 12.
In the curves, we observe that both training and validation loss
decrease as we increase the number of epochs. After 30 epochs,
both training and validation loss become stable with a minimum

gap. Therefore, we conclude that the MFCC+CNN framework
has been trained without overfitting.

Discussion We observe from the training mechanism for all
frameworks that validation accuracy for the stainless steel dataset
is always higher than that of bronze dataset. This result can be
explained by observing that stainless steel training size is larger
than that of bronze (Table 1) and by the fact that testing accuracy
increases with an increase in training sample size [30].

Although the training size of the mixed dataset is larger
than that of other datasets, the validation accuracy of the mixed
dataset is not the largest. We believe the reason is that the bronze
and stainless steel datasets have different distributions. To ver-
ify that the two datasets have different distributions, we have
trained our frameworks on the stainless steel before testing on
the bronze, and conversely, trained the frameworks on bronze
before testing on stainless steel. We have found the testing accu-
racy to be less than 25 % if we train our framework on stainless
steel and tested on bronze, and 60 % vice versa.

4.2 Performance Evaluation
To evaluate the performance of the proposed frameworks,

we calculate the mean and standard deviation of testing accuracy,
construct the confusion matrices, and measure the F1 score for all
frameworks. We report the testing accuracy in Table 2, confusion
matrices in Table 3 and F1 score in Table 4 respectively.

Table 2 shows a comparative study of our proposed frame-
works as well as its comparison with the state-of-art ANN
model [19]. This is based on single material data sets of Bronze
and Stainless Steel, and mixed dataset with both materials com-
bined. From the table, we observe that our proposed frame-
works outperform the ANN framework in terms of accuracy. Fur-
thermore, we observe that PCA+KNN has the highest accuracy
among all the frameworks.

In order to explain the comparatively lower accuracy of
MFCC+NN and MFCC+CNN, we vary the training size and
measure the testing accuracy of the frameworks as shown in Fig-
ure 13. We observe that PCA+KNN yield a higher accuracy
than other frameworks for the same training size. Furthermore,
MFCC+NN and MFCC+CNN require a higher training size to
achieve the same accuracy as that of PCA+KNN. For instance,
the black straight lines in Figure 13, show that a training size of
300 is sufficient for PCA+KNN to achieve 94.5% testing accu-
racy, while MFCC+NN and MFCC+ CNN require training sizes
of around 350 and 450 to achieve the same. This implies that
our dataset size (as shown in Table 1) is not large enough for
the deep learning based frameworks to perform well and we will
investigate more into this aspect as part of future work.

We observe that our datasets are imbalanced. Therefore, we
measure the confusion matrix, recall, precision, and F1 scores
to evaluate our frameworks. The reasons are two-fold. First, it
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TABLE 2: COMPARATIVE STUDY OF OUR FRAMEWORKS
VS EXISTING APPROACH ANN [19]

Dataset Method

Mean

Accuracy

(test-set)

Std

Accuracy

(test-set)

Bronze PCA+KNN 90.09 % 0.0363

MFCC+NN 89.69 % 0.0328

MFCC+CNN 86.47 % 0.0394

ANN 60.78 % 0.0620

Stainless

Steel
PCA+KNN 98.99 % 0.0923

MFCC+NN 97.84 % 0.0151

MFCC+CNN 97.01 % 0.0236

ANN 84.46 % 0.03327

Mixed PCA+KNN 96.37 % 0.0571

MFCC+NN 95.85 % 0.0132

MFCC+CNN 94.99 % 0.0153

ANN 64.94% 0.1286
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FIGURE 13: Accuracy vs training size (mixed ) of all frame-
works

serves as a quality assessment for a framework with an imbal-
anced dataset. Second, it allows us to check the performance of
our frameworks. From the confusion matrices in Table 3, we ob-
serve that despite our datasets being imbalanced, our frameworks
can effectively pick out good and bad segments. In comparison,
we observe that the existing ANN framework shows a significant
number of false negatives, meaning wrongly identifying a bad
bead as a good bead. Furthermore, as shown in Table 4, we ob-
serve that the precision, recall and F1 score values of our frame-
works are higher than that of the existing framework (ANN).
Therefore, we can conclude that our frameworks perform well

even with an imbalanced dataset.
Next, we also measure the computation speed of the univer-

sal frameworks PCA+KNN, MFCC+NN and MFCC+CNN, and
they are found to be less than 50 ms for feature extraction and
defective bead identification. This seems to be acceptable to be
used in a real-time situation.

TABLE 3: CONFUSION MATRICES OF ALL FRAME-
WORKS ON DIFFERENT DATASETS

Frameworks True

Good Bad

PCA+KNN Predicted Good 35 3

Bad 2 25

MFCC+NN Predicted Good 36 4

Bad 1 24

MFCC+CNN Predicted Good 36 3

Bad 1 25

ANN Predicted Good 37 27

Bad 0 1

BRONZE

Frameworks True

Good Bad

PCA+KNN Predicted Good 108 1

Bad 0 21

MFCC+NN Predicted Good 107 2

Bad 1 20

MFCC+CNN Predicted Good 108 1

Bad 0 21

ANN Predicted Good 108 22

Bad 0 0

STAINLESS STEEL

Frameworks True

Good Bad

PCA+KNN Predicted Good 153 3

Bad 0 39

MFCC+NN Predicted Good 151 3

Bad 2 39

MFCC+CNN Predicted Good 148 5

Bad 5 37

ANN Predicted Good 152 41

Bad 1 1

MIXED
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TABLE 4: COMPARATIVE STUDY OF ALL FRAMEWORKS

Data-set Method precesion Recall
F1-

Score

Bronze PCA+KNN 91 % 91 % 91 %

MFCC+NN 84% 83 % 83 %

MFCC+CNN 88 % 88 % 88 %

ANN 34 % 58 % 43 %

Stainless

Steel
PCA+KNN 99 % 99 % 99 %

MFCC+NN 99 % 99 % 99 %

MFCC+CNN 99 % 98 % 99 %

ANN 78 % 88 % 83 %

Mixed PCA+KNN 98 % 98 % 98 %

MFCC+NN 97 % 97 % 97 %

MFCC+CNN 95 % 95 % 95 %

ANN 85 % 81 % 73 %

4.3 Robustness
Note that labels of our beads can be slightly inaccurate be-

cause the thresholds are based on human perception and can be
subjective. However, it is not our focus to solve the mislabelling
problem in this paper. Nevertheless, a way to address this prob-
lem is to check for the robustness of our frameworks with respect
to mislabelling. Since our proposed frameworks give higher ac-
curacy than ANN, we went ahead to evaluate the robustness of
our proposed frameworks.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
% of mislabelled training data(mixed)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

ac
cu

ra
cy

MFCC+NN
MFCC+CNN
PCA+KNN

FIGURE 14: Robustness of PCA+KNN, MFCC+NN and
MFCC+CNN frameworks with respect to training set misla-
belling

To evaluate the robustness, we split the mixed dataset uni-
formly at random into 75% training set and 25% testing set. We
corrupt our training label from 10% up to 50% and calculate the
mean testing accuracy based on the original labels of the test

dataset. As shown in the results in Figure 14, we observe that
we get above 75 %, 70% and 80% mean testing accuracy against
50% mislabelled train dataset for PCA+KNN, MFCC+NN and
MFCC+CNN frameworks, respectively. Therefore, we can con-
clude MFCC+CNN is more robust than others.

5 CONCLUSIONS
This paper presents a study on the performance of real-time

sensing of geometrically defective beads using acoustic-signal-
based frameworks in the robotic WAAM process. We have pro-
posed and evaluated three universal identification frameworks,
namely PCA+KNN, MFCC+NN and MFCC+CNN, for sensing
geometric defects. Among these frameworks, PCA+KNN per-
forms best in terms of accuracy, while MFCC+CNN performs
best in terms of robustness. These findings serve as our first step
in developing an intelligent system for the identification of de-
fective beads early on the printing process so that appropriate in-
tervention could be implemented to save welding resources and
material costs.

In future, we want to tackle the issues of class imbalance and
labelling errors due to human perception in our datasets. More-
over, we also plan to characterize the different types of geometric
defects such as Blowout, Undercut, Humping etc. and explore
their relationship with acoustic signals so as to further enhance
the defect identification of our WAAM system.
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