Generative Artificial Intelligence (GenAl) Prompt Engineering for Additive
Manufacturing (AM)

N. A. Surovi'? and P. Witherell?

Singapore University of Technology and Design (SUTD)!
National institute of Standards and Technology (NIST)?

Abstract

Additive manufacturing (AM) faces several challenges in achieving efficient and defect-free
printing. Although traditional machine learning (ML) has proven effective in mitigating these challenges,
it requires specialized models for solving specific problems with limited scopes. Generative artificial
intelligence (GenAl) holds promise as a versatile tool capable of addressing multiple issues
simultaneously by leveraging its expansive training data and robust problem-solving capabilities.
However, getting the desired output from GenAl relies heavily on crafting effective prompts because
incorrect formulation of prompts can lead to unexpected responses. Prompt engineering is crucial for
GenAl models to produce desired outputs efficiently. In our study, we explore how different prompt
techniques affect the responses of GenAl tools in addressing AM problems. We examine five popular
prompt engineering methods: Zero-shot, Few-shot, Chain-of-thought, ReAct, and Directional Stimulus
Prompting. We also use well-known GPT-4 model to get the responses across the prompt engineering
methods.

Introduction

Additive Manufacturing (AM) has gained increasing popularity in both industry and
academia due to its cost-effectiveness and time-saving capabilities. It offers several advantages
over traditional manufacturing methods, such as the ability to create complex parts, achieve
lightweight designs, and shorten production and delivery times. These advantages make AM
valuable in various sectors, including aerospace, oil and gas, and offshore marine industries.
However, AM faces several challenges during the transformation from design to final product. For
instance, issues such as designing optimal 3D models, selecting suitable process parameters, and
dealing with defects like lack of fusion, porosity, cracks, distortion, and oxidation etc. [1], [2].
These issues can impact the accuracy and quality of the final product, reducing its strength,
lifespan, and performance [3], [4], [5]. Therefore, addressing these challenges is crucial for
achieving efficient and defect-free printing in AM [6], [7].

Machine learning (ML) models have been instrumental in addressing various challenges in
AM. These models are highly specialized and tailored to solve specific problems [7], [8]. In
contrast, Generative Artificial Intelligence (GenAl) offers a promising multi-task solution and
emerges as a valuable resource for addressing a broad spectrum of AM problems, from generic to
complex. GenAl algorithms, trained on diverse datasets and have the potential to replace multiple
specialized ML models with a single, versatile tool capable of handling various types of data and
issues [8]. However, achieving consistency in responses from different GenAl tools is challenging.
Slight variations in queries can result in drastically different responses, and even when using the

same query, responses can vary significantly due to differences in the architecture and training
datasets of GenAl models. Our understanding of these variations in GenAl responses based on the
queries provided to the models is still limited [9]. Before enhancing the capabilities of GenAl
models through fine-tuning or retraining, it is crucial to understand what these models are currently
capable of by querying them effectively. Crafting effective prompts is essential to reveal the
fundamental limitations of existing GenAl models and identify areas where additional training
might be required. This practice, known as prompt engineering, that involves developing and
optimizing queries to achieve the best possible results from a given GenAl model. Effectively
designed prompts are key to obtain desired outputs and improve the accuracy and relevance of
responses from GenAl tools [10].

In this paper, we explore how variations in prompts impact the responses of GenAl tools
in addressing AM problems. Furthermore, we investigate which prompt engineering techniques
provide the best queries to obtain the most accurate responses from GenAl tools for specific AM
scenarios. Our contributions are organized into three key areas: introduction of various prompt
engineering methods relevant to AM, guidance on using these techniques with GenAl tools to
address AM problems, and an explanation of why certain techniques are more effective than others
for specific AM tasks. By focusing on these areas, our aim is to enhance the effectiveness of GenAl
tools in solving AM challenges through improved prompt engineering.

Background
Challenges of AM and GenAl role

To achieve a defect-free and optimized 3D object, researchers face several challenges
during the design to production phases. ML models are already proven effective to solve many of
these issues. However, a specialized ML model alone is not sufficient to handle all these
challenges. In this case, GenAl can play a promising role in addressing all aspects of AM
challenges, as these models are trained on diverse datasets across multiple modalities. This
capability allows GenAl tools to handle various data types and address a wide range of tasks in
AM simultaneously. In our previous work, we proposed three types of task metrics to evaluate the
effectiveness of existing GenAl tools in addressing AM challenges. These metrics were selected
based on the opportunities within four exploration spaces (Figure 1). The task metrics include
agnostic metrics, domain task metrics, and problem task metrics [8]. Agnostic metrics refer to
baseline performance indicators used to evaluate GenAl capabilities across various AM tasks.
Domain tasks metrics refer to the generic tasks or activities directly related to the specific phase
within AM. Problem task metrics refer to the specific challenges in AM that require problem-
solving skills in a particular AM phase, relying on established scientific principles and engineering
methodologies for clear, objective solutions.

GenAl prompt engineering

GenAl algorithms can generate novel and realistic content, such as images, audio, video,
and 3D models, by replicating real data distributions [10]. However, guiding GenAl models to the
correct solution space is crucial. They require training on extensive datasets, though the
effectiveness of this training can vary based on the selected data. Even with well-trained models,

variations in how queries are formulated can significantly influence the quality of the results [9].

Benchmarking
metrics

Figure 1: Digital flow of AM and Generative Al dimensions in each AM phase, with selected
metrics under these dimensions [§].

Prompt engineering is a powerful technique that enhances GenAl model responses by
strategically crafting queries that align with the model's training and capabilities. This technique
improves the precision and relevance of generated answers by formulating clear, specific, and
contextually appropriate questions. By optimizing query structure, prompt engineering maximizes
the utility of existing GenAl models without requiring architectural changes or extensive
retraining. This method is cost-effective and efficient, focusing on leveraging the model's existing
capabilities to address the complexities of specific AM tasks effectively [11].

Types of Prompt Engineering

In this paper, we explore simple and easily applicable prompt engineering techniques to
address various AM problems. Our focus is on methods that do not require retrieving data from
external sources, such as the Retrieval Augmented Generation (RAG) method developed by
META researchers [12]. We examine five types of prompt engineering:

Zero-shot prompting [13] involves asking a GenAl model to perform a task or generate a
response without providing any specific examples or context. This approach relies on the model's
ability to generalize from its extensive training data to understand and respond to new, previously
unseen queries.

Few-shot prompting [14] provides the GenAl model with a limited number of examples or
contextual information alongside the query. This technique helps the model understand the task
better and generate more accurate responses.

Chain-of-thought (CoT) prompting [15] guides the GenAl model through a series of logical
reasoning steps or sub-questions to arrive at a detailed conclusion. This method helps the model

tackle complex problems by breaking them down into manageable parts. In our experiments, we
use zero shot CoT [16] to keep our prompt simple and avoid complexity.

ReAct prompting [17] combines reasoning steps with directives for action, asking the GenAl
model to analyze a problem and suggest practical solutions. This method is suitable for scenarios
requiring both analysis and concrete actions.

Directional Stimulus Prompting (DSP) [18] guides the GenAl model’s response by providing
contextual clues or stimuli that influence its output towards a desired direction. This technique
does not provide explicit instructions but uses hints or themes to shape the model's interpretation
and answer.

Methodology

Overview of our approach

In our earlier work [8], we developed zero-shot prompts to generate responses from GenAl tools
for three types of AM tasks. Since we wanted to evaluate the model's ability to solve tasks based on its
prior knowledge, we did not provide any contextual clues or examples. Our results showed that zero-shot
prompt engineering was sufficient for most agnostic and domain task metrics because those tasks are
simple. However, for problem task metrics, zero-shot prompting often failed to produce the desired
responses. Therefore, in this paper, we focus on addressing problem task metrics using five different
prompt engineering techniques described in the background. As shown in Figure 2, for each problem
task metric, we apply and compare these five techniques. We evaluate the responses using a precision
vs. recall graph (explained in the next section) and select the prompt engineering technique that provides
the best answers for each task.

Problem Tasks
1. Generate dimensioned

Generate prompt based on

or complex 3D model different prompt engineering Compare the Select the prompt
~2. Select torch speed and - z DL response based engineering technique
wire feed rate for MIG. 2. Ch: n : T on precession vs that provides better
- React recall graph response

Figure 2: Overview of exploration of different prompt engineering for different AM tasks

Precision vs. Recall
We define precision and recall as follows [19]:

Recall: Measures how well the GenAl captures all the information and addresses all aspects of the
query (completeness). A high recall indicates that the GenAl's response is relevant to the prompts
and captures important information.

Precision: Measures the accuracy of the information provided by the GenAl (correctness). A high
precision indicates that the GenAl's response closely matches the reference.

Recall vs precession relation graph:

We use a precision vs. recall graph to compare GenAl responses based on different prompt engineering
techniques. Figure 3 illustrates this comparison, categorizing the responses into four categories: high
precision and high recall (complete and correct), low precision and high recall (complete but not
correct), high precision and low recall (correct but not complete), and low precision and low recall
(neither complete nor correct). This graph helps us evaluate and select the most effective prompt
engineering technique for each problem task metric.

Correct but not
Complete

Complete and correct

Precision
(correctness)

Complete but not correct

Recall E—)

(completeness)

Figure 3: Precision vs recall graph based on GenAl responses.

Case Study

In this section, we demonstrate the utility of exploring different prompt engineering techniques
to enhance responses for various AM tasks through case studies. These studies highlight how
varying prompts can influence the outcomes generated by GenAl tools as the same prompt
technique may not be effective across all AM tasks. We focus on the two specific tasks of the pre-
printing phases: generating a complex 3D model (design phase) and selecting torch speed and wire
feed rate for the Wire Arc Additive Manufacturing (WAAM) process (process planning phase).
We use GPT-4-turbo-2024-04-09 (trained up to December 2023) with a temperature of 0 to reduce
randomness in token selection.

Case 1) Design: Generating a complex-dimensioned 3D model.

We aim to create an STL file of the 3D model referenced in Figure 4. To achieve this, we explore
various prompt engineering techniques, excluding few-shot prompting. Few-shot prompting requires
providing examples, and since generating a dimensioned 3D model is already a complex task, adding
examples would only increase the complexity.

L.

Figure 4: Reference "DemoCube" is a 40 mm sided cube featuring three distinct through bores: a 6 mm
radius circular bore at the center of the xy face, a 10 mm sided square bore at the center of the xz face,
and a 10 mm sided triangular bore at the center of the yz face, oriented normal to the face [20].

Zero shot

We asked ChatGPT-4 to generate a 3D model of the DemoCube in either OpenSCAD or STL
format, using the measurements provided in Figure 5(a). ChatGPT-4 produced the OpenSCAD
code, which is partially shown in Figure 5(b) due to its length. We then copied the script into
OpenSCAD, rendered the model, and exported it as an STL file. To verify the dimensions (e.g.,
the cube's length, the radius of the circular bore, the length of the square bore, etc.), we used
Blender software. Finally, we opened the STL file in 3D viewer software to visualize the final
model, as shown in Figure 5(c).

Write a .stl/OpenSCAD file to create a "DemoCube" with 40 mm side length
- make a through bore with radius 6 mm in the middle of the xy face of that
"DemoCube"” and - make a square through bore with side length 10 mm in the middle

2 5 2 . . e Prom
of the xz face of that "DemoCube" and - make a triangular through bore with side ompt

length 10 mm in the middle of the yz face of that "DemoCube" and oriented normal to
it.”

GPT) ‘ . I
o

Figure 5: Zero-Shot Prompt for Generating the DemoCube.

From this experiment, we observed that while GPT-4 generated a complete 3D model, it did not
match the reference exactly.

CoT

We used zero shot CoT prompting to avoid complexity. Zero shot CoT involves structuring
prompts to encourage the model to break down the problem into manageable steps, explicitly
articulating these steps before concluding. This method is ideal for complex tasks with multiple
sub-tasks.

In our case, we used the same zero-shot prompt but added a sentence to trigger the CoT process,
which significantly altered GPT-4's response. ChatGPT-4 generated the OpenSCAD code, which
we rendered and exported as an STL file. The model's dimensions were verified in Blender, as
done previously.

“Wiite a .stl/OpenSCAD file to create a "DemoCube" with 40 mm side length
- make a through bore with radius 6 mm in the middle of the xy face of that
"DemoCube" and - make a square through bore with side length 10 mm in the middle

of the xz face of that "DemoCube" and - make a triangular through bore with side
length 10 mm in the middle of the yz face of that "DemoCube" and oriented normal to
it.”

GPT response

C

Figure 6: CoT prompt for Generating the DemoCube.

From the figure 6, we observed that the final 3D model matches the reference model based on
Blender measurement. Therefore, it demonstrates that the zero shot CoT approach provides both a
correct and complete response.

ReAct

To apply ReAct prompting, we used a LangChain agent to get responses from GPT-4. LangChain
agents rely on the LLM's capabilities for reasoning, decision-making, processing information,
drawing conclusions, and interacting with the outside world. As ReAct combines reasoning and
decision-making, we crafted a prompt using a LangChain agent.

We started with the same zero-shot prompt but created a customized "general knowledge" tool and
added it to the agent. We named the tool "language model" and selected the agent type as "zero-
shot ReAct description,” meaning the agent performs a reasoning step before acting [21] .

Figure 7(c) and Blender measurements show that the final model is close to the reference, but the
triangle's position and size are slightly off and need minor adjustments. Overall, the ReAct prompt
is still a good option for generating 3D models.

“Write a .stl/OpenSCAD file to create a "DemoCube" with 40 mm side length
- make a through bore with radius 6 mm in the middle of the xy face of that "DemoCube"
and - make a square through bore with side length 10 mm in the middle of the xz face of

that "DemoCube" and - make a triangular through bore with side length 10 mm in the
middle of the yz face of that "DemoCube" and oriented normal to it.”” with customized tool
(tool name="language model*) and Lang chain agent (AgentType=
ZERO SHOT REACT DESCRIPTION)

GPT response

Figure 7: React prompt for Generating the DemoCube.
DSP

To use DSP, we provided a hint to guide GPT-4's response. Starting with the same zero-shot
prompt, we introduced the hint to direct GPT-4's output. After receiving the response, we followed
the same steps as with zero-shot prompting: copying and pasting the script into OpenSCAD,
rendering the model, exporting it as an STL file, and then verifying it using Blender. Finally, we
opened the STL file in a 3D viewer, as illustrated in Figure 8(c).

Write a .stl/OpenSCAD file to create a "DemoCube" with 40 mm side length

- make a through bore with radius 6 mm in the middle of the xy face of that
"DemoCube" and - make a square through bore with side length 10 mm in the middle

of the xz face of that "DemoCube” and - make a triangular through bore with side
length 10 mm in the middle of the of that "DemoCube" and oriented normal to
it.” Hint: subtract cube from the Cylindrical Bore in the middle of the xy face. Then
Subtract the cube from Square in the middle of the xz face and Subtract the cube
from a Triangular Bore in the middle of the yz face.

GPT response

b c

Figure 8: DSP prompt for Generating the DemoCube.

Figure 8(c) and Blender measurements show that while the code generates the 3D object, it is not
entirely correct. Some modifications to the existing code are necessary to match the reference
exactly. However, it is quite close to the reference.

Case 2) Process Plan: Select torch speed and wire feed rate for WAAM process.

An optimal and acceptable range for torch speed and wire feed rate in stainless steel (SS)
WAAM process lies between 7 to 15 mm/s and 4 to 6 m/min, respectively [22]. Our objective is
to predict these process parameters using various prompt engineering techniques.

Zero shot

We requested ChatGPT-4 to predict two process parameters (torch speed and wire feed rate) for
WAAM process as shown in figure 9 (a). ChatGPT-4 predicted the good process parameters in the
desired units, but they did not match to the reference values.

What is the acceptable torch speed (mm/s) and wire feed rate (m/min) for wire arc additive

manufacturing stainless steel printing?

GPT response

The torch speed for WAAM is typically between 100-400
mm/s, and the wire feed rate is usually between 3-20
m/min.

Figure 9: Zero shot prompt for predicting process parameters.
Few shot
For the few-shot prompt technique, we provided two examples for Inconel and bronze, including

their process parameters (torch speed and wire feed rate) values, and then ask for the process
parameters for stainless steel in the WAAM process.

“What is the acceptable torch speed (mr d wire feed rate (m/min) for wire arc

additive manufacturing stainless steel print with 2 example for Inconel and Bronze
provided

GPT response

'input': 'stainless steel’, ‘torch speed': ‘[6, 15])" mm/s
'input': 'stainless steel', ‘Wire feed rate’ : [4, 8] m/min

b [
Figure 10: Few shot prompt for predicting process parameters.

We used LangChain to create the few-shot prompt because LangChain's prompt template makes
the prompt structure flexible and effective for interacting with language models.

From the figure, we observe that the final output is close to the reference. Therefore, we can say
that the few-shot approach provides both a correct and complete response.

CoT

In the CoT approach, we utilized the same zero-shot prompt with an additional sentence to
initiate the zero shot CoT process, detailed in Figure 11 (a). However, the CoT response deviated
significantly from the reference values observed in the figure 11 (b). Thus, it is evident that the
CoT approach did not yield a correct or complete response.

“What is the acceptable torch speed (mm/s) and wire feed rate (m/min) for wire arc
additive manufacturing stainless steel printing?” lets think step by step

GPT response

................. as a general guideline, a torch speed of around 3-5
mm/s and a wire feed rate of around 5-15 m/min are often used in
wire arc additive manufacturing of stainless steel............

b o]
Figure 11: CoT prompt for predicting process parameters.

ReAct

“What is the acceptable torch speed (mm/s) and wire feed rate (m/min) for wire arc additive
manufacturing stainless steel printing?”” with customized tool (tool name="language model*) Prompt
and Lang chain agent (AgentType= ZERO SHOT REACT DESCRIPTION)

a

GPT response

Action Input: typical torch speed and wire feed rate for gas metal arc welding stainless steel
Dbservation: The typical torch speed and wire feed rate for gas metal arc welding (GMAW) of stainless steel can vary depending on the specific applicatio
h, material thickness, and desired weld quality. However, general guidelines for welding stainless steel with GMAW are as follows:

- Torch Speed: Typically ranges from PRI IR R Rt O

Wire Feed Rate: Typically ranges from 188 to 580 inches per minute (IPM).

Figure 12: React prompt for predicting process parameters.

To apply ReAct prompting, we used the same LangChain agent as in Case Study 1 to get the
response from GPT-4. The structure of the prompt is the same as in Case Study 1.

From the figure, we observe that ChatGPT's response includes one answer (torch speed) close to
the reference and another answer (wire feed rate) not close to the reference. Therefore, we can
conclude that ReAct provides a complete answer, though it may not be entirely accurate.

DSP

To use DSP, we need to give a hint that stimulates GPT-4's response like Case Study 1, as shown
in Figure 13.

The figure shows that one answer is (wire feed rate) close to the reference and another answer
(torch speed) is farther away from the reference. So, the DSP approach provides a complete
answer, but not a fully correct one.

“What is the acceptable torch speed (mm/s) and wire feed rate (m/min) for wire arc additive
manufacturing stainless steel printing?”” Hint: Wire arc additive manufacturing, torch speed ,

wire feed rate.

a

GPT response

[n wire arc additive manufacturing (WAAM) for stainless steel, the torch speed and wire feed rate can vary depe
2 of stainless steel, the desired properties of the final product, and the specific setup of the equipment. How

1. **Torch Speed**: The torch speed in WAAM typically ranges from PICERTERTToRETVE ST TNE T < RCHy AL T VED BN | TN 1o 1T
rn influences the microstructure and mechanical properties of the deposited metal.

R. **Wire Feed Rate**: For stainless steel, the wire feed rate can range from 3 to 5 meters per minuteclERELFEEES

1 speed and the desired bead geometry to ensure stable arc conditions and good material deposition.

b

Figure 13: DSP prompt for predicting process parameters.

Discussion

The AM process is complex, and it remains unclear which specific AM challenges can be
effectively addressed using GenAl tools, though ongoing research is exploring this area [8]. After
analyzing the case study in this research, we concluded that the prompt techniques we explored
play a crucial role in obtaining desired responses from GenAl tools for complex problems. While
all techniques provided a similar level of completeness by responding to the prompts as asked, the
accuracy varied depending on the specific technique used. This indicates that while GenAl can
deliver comprehensive answers, the correctness of these responses may differ based on the
prompting approach.

It is important to note that these case studies focused only on two AM tasks and used a
single GenAl model GPT-4. Many other AM tasks and models were not covered in this study.
Additionally, we did not investigate all available techniques (e.g., RAG, Relaxion, Tree of
Thought) because the ones we tested were sufficient for obtaining desired responses from GPT-4.

Key findings of this paper are illustrated in the Precision vs. Recall graphs in Figure 14 and
are summarized below:

1. The effectiveness of prompt techniques varies by task: The prompt structure should
align with the task's specific requirements to generate relevant responses.

Precision

(correctness) —
L)
pg
(correctness —
£
|
/
Ay

Precision

Zero shot,
Zero cor
shot

Reeall —_— Recall el

(completeness) (completeness)

a b

Figure 14: Precision vs Recall graph for case 1 (a) and case 2 (b).

2. Case Study 1: The CoT prompt technique demonstrated superiority in generating complex
3D models, while the ReAct and DSP techniques required minor modifications. All
explored techniques outperformed zero-shot prompts.

3. Case Study 2: The few-shot prompt technique correctly predicted both process parameters,
whereas ReAct and DSP predicted only one correctly, and CoT and zero-shot techniques
failed to predict accurately. Again, all explored techniques outperformed zero-shot
prompts. For this case study, we used only one paper for reference process parameters.

For this research, we generated responses from the model API using a single prompt
instance, based on OpenAl's assurance that data sent to their API is not used to train or improve
the models [23]. In previous experiments, we used the same prompt multiple times to gather
responses from GenAl tools. We observed that while the line-by-line responses often differed, the
overall takeaway and context remained consistent across attempts most of the time [8].

Conclusion

This paper explores the utility and effectiveness of different prompt engineering techniques for
solving complex AM problems. Prompt engineering helps to improve the quality of responses
from GenAl models by crafting effective questions. While simple AM problems can be addressed
with straightforward prompts, complex problems require more sophisticated prompt structures to
obtain accurate responses from GenAl tools. Prompt enginerring approach leverages the model's

existing knowledge, enhancing its utility for specific tasks in a cost-effective and efficient manner
without retraining or modifying the model's architecture.

We investigated several prompt engineering techniques to address complex AM problems and
demonstrated how different prompt structures are tailored to solve specific AM issues. Two case
studies were conducted to assess ChatGPT-4's performance in responding to two phases of AM:
design and process planning. We categorized different prompt techniques based on their responses,
illustrated in precision vs. recall graphs for each task. Our findings indicate that a single prompt
engineering technique cannot address all AM problems effectively, as each task is unique and
requires prompts tailored to its specific needs and context. In the future, we plan to explore the
Retrieval-Augmented Generation (RAG) prompt engineering technique because sometimes simple
prompt engineering is not enough to solve more knowledge intensive AM problems that require
external knowledge source to provide better response.

Acknowledgment

This research was funded by the National Institute of Standards and Technology (NIST), U.S.
Department of Commerce, under the Additive Manufacturing Program. Certain commercial and
third-party products are identified in this paper. Such identification does not imply
recommendation or endorsement by NIST, nor does it imply that the products identified are
necessarily the best available for the purpose.

References

[1] Standard, A., et al., 2012. “Standard terminology for additive manufacturing technologies”.
ASTM International F2792-12a, pp. 1-9.

[2] Nowrin Akter Surovi and Gim Song Soh. “Acoustic feature based geometric defect
identification in wire arc additive manufacturing”. In: Virtual and Physical Prototyping 18.1
(2023), €2210553.

[3] Frazier, W. E., 2014. “Metal additive manufacturing: a review”. Journal of Materials
Engineering and performance, 23, pp. 1917-1928.

[4] N. A. Surovi, A. G. Dharmawan, and G. S. Soh, “A Study on the Acoustic Signal Based
Frameworks for the Real-Time Identification of Geometrically Defective Wire Arc Bead,”
Proceedings of the ASME Design Engineering Technical Conference, vol. 3A-2021, Nov.
2021, doi: 10.1115/DETC2021-69573.

[5] N. A. Surovi and G. S. Soh, “MULTI-BEAD AND MULTI-LAYER PRINTING
GEOMETRIC DEFECT IDENTIFICATION USING SINGLE BEAD TRAINED
MODELS,” 2023.

[6] N. A. Surovi, S. Hussain, and G. S. Soh, “A Study of Machine Learning Framework for
Enabling Early Defect Detection in Wire Arc Additive Manufacturing Processes,”
Proceedings of the ASME Design Engineering Technical Conference, vol. 3-A, Nov. 2022,
doi: 10.1115/DETC2022-89164.

[71 N. A. Surovi and G. S. Soh, “A Heuristic Approach to Classify Geometrically Defective
Bead Segments Based on Range of Curvature, Range of Sound Power and Maximum
Height,” Proceedings of the ASME Design Engineering Technical Conference, vol. 3A,
Nov. 2023, doi: 10.1115/DETC2023-114741.

[8]
[9]
[10]

[11]

[12]
[13]
[14]
[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

Nowrin Akter Surovi et al. “Current State and Benchmarking Generative Artificial
intelligence for Additive Manufacturing”. In: (2024).

Sabit Ekin. “Prompt engineering for ChatGPT: a quick guide to techniques, tips, and best
practices”. In: Authorea Preprints (2023).

“Prompt Engineering Guide | Prompt Engineering Guide.” Available:
https://www.promptingguide.ai/

Ggaliwango Marvin et al. “Prompt Engineering in Large Language Models”. In:
International Conference on Data Intelligence and Cognitive Informatics. Springer. 2023,
pp. 387-402.

Y. Gao et al., “Retrieval-Augmented Generation for Large Language Models: A Survey,”
Dec. 2023. Available: http://arxiv.org/abs/2312.10997.

Jason Wei et al. “Finetuned language models are zero-shot learners”.

In:arXiv preprint arXiv:2109.01652 (2021).

T. B. Brown et al., “Language models are few-shot learners,” Adv Neural Inf Process Syst,
vol. 2020-December, 2020.

Jason Wei et al. “Chain-of-thought prompting elicits reasoning in large language models”.
In: Advances in neural information processing systems 35 (2022), pp. 24824-24837.
Takeshi Kojima et al. “Large language models are zero-shot reasoners”. In:Advances in
neural information processing systems 35 (2022), pp. 22199-22213.

S. Yao et al., “ReAct: Synergizing Reasoning and Acting in Language Models,” Oct. 2022.
Available: http://arxiv.org/abs/2210.03629.

Z.Li, B. Peng, P. He, M. Galley, J. Gao, and X. Yan, “Guiding Large Language Models via
Directional Stimulus Prompting,” Adv Neural Inf Process Syst, vol. 36, pp. 62630—-62656,
Dec. 2023.

Rosanne Schoonbeek et al. “Completeness, Correctness and Conciseness of Physician-
Written Versus Large Language Model Generated Patient Summaries Integrated in
Electronic Health Records”. In: Available at SSRN 4835935 ().

“Design any part with ChatGPT for 3D printing. - Hackster.io. Available:
https://www .hackster.io/trisolarian/design-any-part-with-chatgpt-for-3d-printing-36de7f.
“langchain.agents.agent_types.AgentType — R & LangChain 0.2.16.”Available:
https://api.python.langchain.com/en/latest/agents/langchain.agents.agent types.AgentType
.html

Nowrin Akter Surovi and Gim Song Soh. “Process map generation of geometrically uniform
beads using support vector machine”. In: Materials Today: Proceedings 70 (2022), pp.
113—118.

[23] “Models - OpenAl APIL.” Available: https://platform.openai.com/docs/models/gpt-base.

https://platform.openai.com/docs/models/gpt-base

