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Abstract 

 

 Additive manufacturing (AM) faces several challenges in achieving efficient and defect-free 

printing. Although traditional machine learning (ML) has proven effective in mitigating these challenges, 

it requires specialized models for solving specific problems with limited scopes. Generative artificial 

intelligence (GenAI) holds promise as a versatile tool capable of addressing multiple issues 

simultaneously by leveraging its expansive training data and robust problem-solving capabilities. 

However, getting the desired output from GenAI relies heavily on crafting effective prompts because 

incorrect formulation of prompts can lead to unexpected responses. Prompt engineering is crucial for 

GenAI models to produce desired outputs efficiently. In our study, we explore how different prompt 

techniques affect the responses of GenAI tools in addressing AM problems. We examine five popular 

prompt engineering methods: Zero-shot, Few-shot, Chain-of-thought, ReAct, and Directional Stimulus 

Prompting. We also use well-known GPT-4 model to get the responses across the prompt engineering 

methods.  

 

 

Introduction 

 

 Additive Manufacturing (AM) has gained increasing popularity in both industry and 

academia due to its cost-effectiveness and time-saving capabilities. It offers several advantages 

over traditional manufacturing methods, such as the ability to create complex parts, achieve 

lightweight designs, and shorten production and delivery times. These advantages make AM 

valuable in various sectors, including aerospace, oil and gas, and offshore marine industries. 

However, AM faces several challenges during the transformation from design to final product. For 

instance, issues such as designing optimal 3D models, selecting suitable process parameters, and 

dealing with defects like lack of fusion, porosity, cracks, distortion, and oxidation etc. [1], [2]. 

These issues can impact the accuracy and quality of the final product, reducing its strength, 

lifespan, and performance [3], [4], [5]. Therefore, addressing these challenges is crucial for 

achieving efficient and defect-free printing in AM [6], [7].  

 

 Machine learning (ML) models have been instrumental in addressing various challenges in 

AM. These models are highly specialized and tailored to solve specific problems [7], [8]. In 

contrast, Generative Artificial Intelligence (GenAI) offers a promising multi-task solution and 

emerges as a valuable resource for addressing a broad spectrum of AM problems, from generic to 

complex. GenAI algorithms, trained on diverse datasets and have the potential to replace multiple 

specialized ML models with a single, versatile tool capable of handling various types of data and 

issues [8]. However, achieving consistency in responses from different GenAI tools is challenging. 

Slight variations in queries can result in drastically different responses, and even when using the 



 

same query, responses can vary significantly due to differences in the architecture and training 

datasets of GenAI models. Our understanding of these variations in GenAI responses based on the 

queries provided to the models is still limited [9]. Before enhancing the capabilities of GenAI 

models through fine-tuning or retraining, it is crucial to understand what these models are currently 

capable of by querying them effectively. Crafting effective prompts is essential to reveal the 

fundamental limitations of existing GenAI models and identify areas where additional training 

might be required. This practice, known as prompt engineering, that involves developing and 

optimizing queries to achieve the best possible results from a given GenAI model. Effectively 

designed prompts are key to obtain desired outputs and improve the accuracy and relevance of 

responses from GenAI tools [10]. 

 

 In this paper, we explore how variations in prompts impact the responses of GenAI tools 

in addressing AM problems. Furthermore, we investigate which prompt engineering techniques 

provide the best queries to obtain the most accurate responses from GenAI tools for specific AM 

scenarios. Our contributions are organized into three key areas: introduction of various prompt 

engineering methods relevant to AM, guidance on using these techniques with GenAI tools to 

address AM problems, and an explanation of why certain techniques are more effective than others 

for specific AM tasks. By focusing on these areas, our aim is to enhance the effectiveness of GenAI 

tools in solving AM challenges through improved prompt engineering. 

 

Background 

 

Challenges of AM and GenAI role 

 

 To achieve a defect-free and optimized 3D object, researchers face several challenges 

during the design to production phases. ML models are already proven effective to solve many of 

these issues. However, a specialized ML model alone is not sufficient to handle all these 

challenges.  In this case, GenAI can play a promising role in addressing all aspects of AM 

challenges, as these models are trained on diverse datasets across multiple modalities. This 

capability allows GenAI tools to handle various data types and address a wide range of tasks in 

AM simultaneously. In our previous work, we proposed three types of task metrics to evaluate the 

effectiveness of existing GenAI tools in addressing AM challenges. These metrics were selected 

based on the opportunities within four exploration spaces (Figure 1). The task metrics include 

agnostic metrics, domain task metrics, and problem task metrics [8]. Agnostic metrics refer to 

baseline performance indicators used to evaluate GenAI capabilities across various AM tasks. 

Domain tasks metrics refer to the generic tasks or activities directly related to the specific phase 

within AM. Problem task metrics refer to the specific challenges in AM that require problem-

solving skills in a particular AM phase, relying on established scientific principles and engineering 

methodologies for clear, objective solutions. 

 

GenAI prompt engineering 

  

GenAI algorithms can generate novel and realistic content, such as images, audio, video, 

and 3D models, by replicating real data distributions [10]. However, guiding GenAI models to the 

correct solution space is crucial. They require training on extensive datasets, though the 

effectiveness of this training can vary based on the selected data. Even with well-trained models, 



 

variations in how queries are formulated can significantly influence the quality of the results [9].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Digital flow of AM and Generative AI dimensions in each AM phase, with selected 

metrics under these dimensions [8]. 

 

 

Prompt engineering is a powerful technique that enhances GenAI model responses by 

strategically crafting queries that align with the model's training and capabilities. This technique 

improves the precision and relevance of generated answers by formulating clear, specific, and 

contextually appropriate questions. By optimizing query structure, prompt engineering maximizes 

the utility of existing GenAI models without requiring architectural changes or extensive 

retraining. This method is cost-effective and efficient, focusing on leveraging the model's existing 

capabilities to address the complexities of specific AM tasks effectively [11]. 

 

Types of Prompt Engineering 

In this paper, we explore simple and easily applicable prompt engineering techniques to 

address various AM problems. Our focus is on methods that do not require retrieving data from 

external sources, such as the Retrieval Augmented Generation (RAG) method developed by 

META researchers [12]. We examine five types of prompt engineering: 

Zero-shot prompting [13] involves asking a GenAI model to perform a task or generate a 

response without providing any specific examples or context. This approach relies on the model's 

ability to generalize from its extensive training data to understand and respond to new, previously 

unseen queries.  

Few-shot prompting [14] provides the GenAI model with a limited number of examples or 

contextual information alongside the query. This technique helps the model understand the task 

better and generate more accurate responses.  

Chain-of-thought (CoT) prompting [15] guides the GenAI model through a series of logical 

reasoning steps or sub-questions to arrive at a detailed conclusion. This method helps the model 



 

tackle complex problems by breaking them down into manageable parts. In our experiments, we 

use zero shot CoT [16] to keep our prompt simple and avoid complexity. 

ReAct prompting [17] combines reasoning steps with directives for action, asking the GenAI 

model to analyze a problem and suggest practical solutions. This method is suitable for scenarios 

requiring both analysis and concrete actions. 

Directional Stimulus Prompting (DSP) [18] guides the GenAI model’s response by providing 

contextual clues or stimuli that influence its output towards a desired direction. This technique 

does not provide explicit instructions but uses hints or themes to shape the model's interpretation 

and answer.  

Methodology 

 

Overview of our approach 

 In our earlier work [8], we developed zero-shot prompts to generate responses from GenAI tools 

for three types of AM tasks. Since we wanted to evaluate the model's ability to solve tasks based on its 

prior knowledge, we did not provide any contextual clues or examples. Our results showed that zero-shot 

prompt engineering was sufficient for most agnostic and domain task metrics because those tasks are 

simple. However, for problem task metrics, zero-shot prompting often failed to produce the desired 

responses. Therefore, in this paper, we focus on addressing problem task metrics using five different 

prompt engineering techniques described in the background. As shown in Figure 2, for each problem 

task metric, we apply and compare these five techniques. We evaluate the responses using a precision 

vs. recall graph (explained in the next section) and select the prompt engineering technique that provides 

the best answers for each task. 

 

 

Figure 2: Overview of exploration of different prompt engineering for different AM tasks 

Precision vs. Recall 

 We define precision and recall as follows [19]: 

 

Recall: Measures how well the GenAI captures all the information and addresses all aspects of the 

query (completeness). A high recall indicates that the GenAI's response is relevant to the prompts 

and captures important information. 

Precision: Measures the accuracy of the information provided by the GenAI (correctness). A high 

precision indicates that the GenAI's response closely matches the reference.  



 

 

Recall vs precession relation graph: 

 

We use a precision vs. recall graph to compare GenAI responses based on different prompt engineering 

techniques. Figure 3 illustrates this comparison, categorizing the responses into four categories: high 

precision and high recall (complete and correct), low precision and high recall (complete but not 

correct), high precision and low recall (correct but not complete), and low precision and low recall 

(neither complete nor correct). This graph helps us evaluate and select the most effective prompt 

engineering technique for each problem task metric. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Precision vs recall graph based on GenAI responses. 

 

                                                           Case Study 

 

In this section, we demonstrate the utility of exploring different prompt engineering techniques 

to enhance responses for various AM tasks through case studies. These studies highlight how 

varying prompts can influence the outcomes generated by GenAI tools as the same prompt 

technique may not be effective across all AM tasks. We focus on the two specific tasks of the pre-

printing phases: generating a complex 3D model (design phase) and selecting torch speed and wire 

feed rate for the Wire Arc Additive Manufacturing (WAAM) process (process planning phase). 

We use GPT-4-turbo-2024-04-09 (trained up to December 2023) with a temperature of 0 to reduce 

randomness in token selection.  

 

Case 1) Design: Generating a complex-dimensioned 3D model. 

 

We aim to create an STL file of the 3D model referenced in Figure 4. To achieve this, we explore 

various prompt engineering techniques, excluding few-shot prompting. Few-shot prompting requires 

providing examples, and since generating a dimensioned 3D model is already a complex task, adding 

examples would only increase the complexity. 



 

 

Figure 4: Reference "DemoCube" is a 40 mm sided cube featuring three distinct through bores: a 6 mm 

radius circular bore at the center of the xy face, a 10 mm sided square bore at the center of the xz face, 

and a 10 mm sided triangular bore at the center of the yz face, oriented normal to the face [20]. 

 

 

Zero shot 

 

We asked ChatGPT-4 to generate a 3D model of the DemoCube in either OpenSCAD or STL 

format, using the measurements provided in Figure 5(a). ChatGPT-4 produced the OpenSCAD 

code, which is partially shown in Figure 5(b) due to its length. We then copied the script into 

OpenSCAD, rendered the model, and exported it as an STL file. To verify the dimensions (e.g., 

the cube's length, the radius of the circular bore, the length of the square bore, etc.), we used 

Blender software. Finally, we opened the STL file in 3D viewer software to visualize the final 

model, as shown in Figure 5(c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                           Figure 5: Zero-Shot Prompt for Generating the DemoCube. 

 

From this experiment, we observed that while GPT-4 generated a complete 3D model, it did not 

match the reference exactly. 



 

CoT 

 

We used zero shot CoT prompting to avoid complexity. Zero shot CoT involves structuring 

prompts to encourage the model to break down the problem into manageable steps, explicitly 

articulating these steps before concluding. This method is ideal for complex tasks with multiple 

sub-tasks. 

 

In our case, we used the same zero-shot prompt but added a sentence to trigger the CoT process, 

which significantly altered GPT-4's response. ChatGPT-4 generated the OpenSCAD code, which 

we rendered and exported as an STL file. The model's dimensions were verified in Blender, as 

done previously. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 Figure 6: CoT prompt for Generating the DemoCube. 

 

 

From the figure 6, we observed that the final 3D model matches the reference model based on 

Blender measurement. Therefore, it demonstrates that the zero shot CoT approach provides both a 

correct and complete response. 

 

ReAct 

 

To apply ReAct prompting, we used a LangChain agent to get responses from GPT-4. LangChain 

agents rely on the LLM's capabilities for reasoning, decision-making, processing information, 

drawing conclusions, and interacting with the outside world. As ReAct combines reasoning and 

decision-making, we crafted a prompt using a LangChain agent. 

We started with the same zero-shot prompt but created a customized "general knowledge" tool and 

added it to the agent. We named the tool "language model" and selected the agent type as "zero-

shot ReAct description," meaning the agent performs a reasoning step before acting [21] . 



 

Figure 7(c) and Blender measurements show that the final model is close to the reference, but the 

triangle's position and size are slightly off and need minor adjustments. Overall, the ReAct prompt 

is still a good option for generating 3D models. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                  Figure 7: React prompt for Generating the DemoCube. 

 

DSP 

 

To use DSP, we provided a hint to guide GPT-4's response. Starting with the same zero-shot 

prompt, we introduced the hint to direct GPT-4's output. After receiving the response, we followed 

the same steps as with zero-shot prompting: copying and pasting the script into OpenSCAD, 

rendering the model, exporting it as an STL file, and then verifying it using Blender. Finally, we 

opened the STL file in a 3D viewer, as illustrated in Figure 8(c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              

                        

                               Figure 8: DSP prompt for Generating the DemoCube. 



 

Figure 8(c) and Blender measurements show that while the code generates the 3D object, it is not 

entirely correct. Some modifications to the existing code are necessary to match the reference 

exactly. However, it is quite close to the reference. 

 

Case 2) Process Plan: Select torch speed and wire feed rate for WAAM process. 

 

An optimal and acceptable range for torch speed and wire feed rate in stainless steel (SS) 

WAAM process lies between 7 to 15 mm/s and 4 to 6 m/min, respectively [22]. Our objective is 

to predict these process parameters using various prompt engineering techniques. 

 

Zero shot  

 

We requested ChatGPT-4 to predict two process parameters (torch speed and wire feed rate) for 

WAAM process as shown in figure 9 (a). ChatGPT-4 predicted the good process parameters in the 

desired units, but they did not match to the reference values.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Zero shot prompt for predicting process parameters. 

 

Few shot 

 

For the few-shot prompt technique, we provided two examples for Inconel and bronze, including 

their process parameters (torch speed and wire feed rate) values, and then ask for the process 

parameters for stainless steel in the WAAM process.  

 

 

 

 

 

 

 

 

 

                                    

 

                            Figure 10: Few shot prompt for predicting process parameters. 



 

 

We used LangChain to create the few-shot prompt because LangChain's prompt template makes 

the prompt structure flexible and effective for interacting with language models. 

 

From the figure, we observe that the final output is close to the reference. Therefore, we can say 

that the few-shot approach provides both a correct and complete response. 

 

CoT 

In the CoT approach, we utilized the same zero-shot prompt with an additional sentence to 

initiate the zero shot CoT process, detailed in Figure 11 (a). However, the CoT response deviated 

significantly from the reference values observed in the figure 11 (b). Thus, it is evident that the 

CoT approach did not yield a correct or complete response. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: CoT prompt for predicting process parameters. 

 

ReAct 

 

 

                                 Figure 12: React prompt for predicting process parameters.  



 

To apply ReAct prompting, we used the same LangChain agent as in Case Study 1 to get the 

response from GPT-4. The structure of the prompt is the same as in Case Study 1. 

 

From the figure, we observe that ChatGPT's response includes one answer (torch speed) close to 

the reference and another answer (wire feed rate) not close to the reference. Therefore, we can 

conclude that ReAct provides a complete answer, though it may not be entirely accurate. 

 

DSP 

 

To use DSP, we need to give a hint that stimulates GPT-4's response like Case Study 1, as shown 

in Figure 13. 

The figure shows that one answer is (wire feed rate) close to the reference and another answer 

(torch speed) is farther away from the reference. So, the DSP approach provides a complete 

answer, but not a fully correct one. 

 

 

                      Figure 13: DSP prompt for predicting process parameters. 

 

 

Discussion 

The AM process is complex, and it remains unclear which specific AM challenges can be 

effectively addressed using GenAI tools, though ongoing research is exploring this area [8]. After 

analyzing the case study in this research, we concluded that the prompt techniques we explored 

play a crucial role in obtaining desired responses from GenAI tools for complex problems. While 

all techniques provided a similar level of completeness by responding to the prompts as asked, the 

accuracy varied depending on the specific technique used. This indicates that while GenAI can 

deliver comprehensive answers, the correctness of these responses may differ based on the 

prompting approach. 



 

It is important to note that these case studies focused only on two AM tasks and used a 

single GenAI model GPT-4. Many other AM tasks and models were not covered in this study. 

Additionally, we did not investigate all available techniques (e.g., RAG, Relaxion, Tree of 

Thought) because the ones we tested were sufficient for obtaining desired responses from GPT-4.  

Key findings of this paper are illustrated in the Precision vs. Recall graphs in Figure 14 and 

are summarized below: 

1. The effectiveness of prompt techniques varies by task: The prompt structure should 

align with the task's specific requirements to generate relevant responses. 

 

 

 

 

 

 

 

 

                    Figure 14:  Precision vs Recall graph for case 1 (a) and case 2 (b). 

 

2. Case Study 1: The CoT prompt technique demonstrated superiority in generating complex 

3D models, while the ReAct and DSP techniques required minor modifications. All 

explored techniques outperformed zero-shot prompts.  

 

3. Case Study 2: The few-shot prompt technique correctly predicted both process parameters, 

whereas ReAct and DSP predicted only one correctly, and CoT and zero-shot techniques 

failed to predict accurately. Again, all explored techniques outperformed zero-shot 

prompts. For this case study, we used only one paper for reference process parameters. 

 

For this research, we generated responses from the model API using a single prompt 

instance, based on OpenAI's assurance that data sent to their API is not used to train or improve 

the models [23]. In previous experiments, we used the same prompt multiple times to gather 

responses from GenAI tools. We observed that while the line-by-line responses often differed, the 

overall takeaway and context remained consistent across attempts most of the time [8].  

Conclusion 

This paper explores the utility and effectiveness of different prompt engineering techniques for 

solving complex AM problems. Prompt engineering helps to improve the quality of responses 

from GenAI models by crafting effective questions. While simple AM problems can be addressed 

with straightforward prompts, complex problems require more sophisticated prompt structures to 

obtain accurate responses from GenAI tools. Prompt enginerring approach leverages the model's 

a b 



 

existing knowledge, enhancing its utility for specific tasks in a cost-effective and efficient manner 

without retraining or modifying the model's architecture. 

We investigated several prompt engineering techniques to address complex AM problems and 

demonstrated how different prompt structures are tailored to solve specific AM issues. Two case 

studies were conducted to assess ChatGPT-4's performance in responding to two phases of AM: 

design and process planning. We categorized different prompt techniques based on their responses, 

illustrated in precision vs. recall graphs for each task. Our findings indicate that a single prompt 

engineering technique cannot address all AM problems effectively, as each task is unique and 

requires prompts tailored to its specific needs and context. In the future, we plan to explore the 

Retrieval-Augmented Generation (RAG) prompt engineering technique because sometimes simple 

prompt engineering is not enough to solve more knowledge intensive AM problems that require 

external knowledge source to provide better response. 
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